IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v41y2011i2p164-176.html
   My bibliography  Save this article

Hawker Beechcraft Uses a New Solution Approach to Balance Assembly Lines

Author

Listed:
  • Sue Abdinnour

    (Department of Finance, Real Estate, and Decision Sciences, W. Frank Barton School of Business, Wichita State University, Wichita, Kansas 67260)

Abstract

In 2002, Hawker Beechcraft set out to improve the efficiency of its Hawker 800XP assembly line. The line was paced such that an aircraft was moved to the next workstation on the line on a schedule---even if work in a previous workstation had not completed. At the time, work in progress on the assembly line was high, and most work on the aircraft was completed out of station. Hawker Beechcraft's management wanted a more quantitative approach to determine how many workstations are necessary and how to best assign the tasks to the workstations; its goal was to minimize work in progress and out-of-station work. In response to a management request, we proposed a new solution approach based on assembly-line balancing principles but customized to a complex product (aircraft) in a real assembly-line setting. Hawker Beechcraft implemented our recommended solution on the Hawker 800XP product line in 2003. The company also used our new solution approach to balance two other assembly lines, saving over $30 million.

Suggested Citation

  • Sue Abdinnour, 2011. "Hawker Beechcraft Uses a New Solution Approach to Balance Assembly Lines," Interfaces, INFORMS, vol. 41(2), pages 164-176, April.
  • Handle: RePEc:inm:orinte:v:41:y:2011:i:2:p:164-176
    DOI: 10.1287/inte.1100.0535
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1100.0535
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1100.0535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lapierre, Sophie D. & Ruiz, Angel & Soriano, Patrick, 2006. "Balancing assembly lines with tabu search," European Journal of Operational Research, Elsevier, vol. 168(3), pages 826-837, February.
    2. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    3. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    2. M. H. Alavidoost & M. H. Fazel Zarandi & Mosahar Tarimoradi & Yaser Nemati, 2017. "Modified genetic algorithm for simple straight and U-shaped assembly line balancing with fuzzy processing times," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 313-336, February.
    3. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    4. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    5. Otto, Alena & Li, Xiyu, 2020. "Product sequencing in multiple-piece-flow assembly lines," Omega, Elsevier, vol. 91(C).
    6. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    7. Dolgui, A. & Guschinsky, N. & Levin, G. & Proth, J.-M., 2008. "Optimisation of multi-position machines and transfer lines," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1375-1389, March.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    9. Tiacci, Lorenzo, 2015. "Coupling a genetic algorithm approach and a discrete event simulator to design mixed-model un-paced assembly lines with parallel workstations and stochastic task times," International Journal of Production Economics, Elsevier, vol. 159(C), pages 319-333.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    11. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
    12. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    13. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    14. Corominas, Albert & Pastor, Rafael & Plans, Joan, 2008. "Balancing assembly line with skilled and unskilled workers," Omega, Elsevier, vol. 36(6), pages 1126-1132, December.
    15. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    16. Urban, Timothy L. & Chiang, Wen-Chyuan, 2016. "Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem," European Journal of Operational Research, Elsevier, vol. 248(3), pages 789-801.
    17. Wen-Chyuan Chiang & Timothy L. Urban & Chunyong Luo, 2016. "Balancing stochastic two-sided assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6232-6250, October.
    18. Hager Triki & Ahmed Mellouli & Faouzi Masmoudi, 2017. "A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2)," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 371-385, February.
    19. Rifat G. Ozdemir & Ugur Cinar & Eren Kalem & Onur Ozcelik, 2016. "Sub-assembly detection and line balancing using fuzzy goal programming approach," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 65-86.
    20. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:41:y:2011:i:2:p:164-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.