IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v32y2002i5p37-46.html
   My bibliography  Save this article

Market Power and Power Markets

Author

Listed:
  • Jürgen Weiss

    (22 Burnside Avenue, Somerville, Massachusetts 02144)

Abstract

Market power is a prominent issue in the current debate about electricity industry restructuring. Market experiments I conducted with industry subjects via the Internet show the impact of seller concentration, demand-side bidding, and transmission constraints on competition in simulated electricity markets. Realistic modeling of the transmission grid revealed opportunities to exercise market power not found in simpler experimental designs. In particular, increasing the number of sellers in a market did not necessarily reduce market power as standard theory suggests. Rather, locational advantages allowed some players to maintain profits near monopoly levels even when seller concentration was at levels generally considered competitive. The implication is that divestiture of existing local monopolies may not be enough to make electricity markets competitive. I confirm the positive impact of demand-side bidding on competition.

Suggested Citation

  • Jürgen Weiss, 2002. "Market Power and Power Markets," Interfaces, INFORMS, vol. 32(5), pages 37-46, October.
  • Handle: RePEc:inm:orinte:v:32:y:2002:i:5:p:37-46
    DOI: 10.1287/inte.32.5.37.74
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.32.5.37.74
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.32.5.37.74?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Green, Richard J & Newbery, David M, 1992. "Competition in the British Electricity Spot Market," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 929-953, October.
    2. Severin Borenstein & James. Bushnell & Steven Stoft, 2000. "The Competitive Effects of Transmission Capacity in A Deregulated Electricity Industry," RAND Journal of Economics, The RAND Corporation, vol. 31(2), pages 294-325, Summer.
    3. Hogan, William W, 1992. "Contract Networks for Electric Power Transmission," Journal of Regulatory Economics, Springer, vol. 4(3), pages 211-242, September.
    4. William W. Hogan, 1997. "A Market Power Model with Strategic Interaction in Electricity Networks," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-141.
    5. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordi Brandts & Paul Pezanis‐Christou & Arthur Schram, 2008. "Competition with forward contracts: a laboratory analysis motivated by electricity market design," Economic Journal, Royal Economic Society, vol. 118(525), pages 192-214, January.
    2. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.
    3. Rajesh Gangakhedkar & R.K. Mishra, 2014. "Does NTPC Have a Dominant Position? A Critical Analysis," Journal of Infrastructure Development, India Development Foundation, vol. 6(2), pages 167-183, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neuhoff, K., 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Cambridge Working Papers in Economics 0310, Faculty of Economics, University of Cambridge.
    2. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    3. E. Anderson & A. Philpott & H. Xu, 2007. "Modelling the effects of interconnection between electricity markets subject to uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 1-26, February.
    4. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.
    5. James Bushnell, 2003. "A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United States," Operations Research, INFORMS, vol. 51(1), pages 80-93, February.
    6. Guido Pepermans & Bert Willems, 2004. "Ramsey Pricing in a Congested Network with Market Power in Generation: A Numerical Illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0408, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    7. Bert Willems & Guido Pepermans, 2003. "Regulating transmission in a spatial oligopoly: a numerical illustration for Belgium," Energy, Transport and Environment Working Papers Series ete0314, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment.
    8. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    9. Twomey, P. & Green, R. & Neuhoff, K. & Newbery, D., 2005. "A Review of the Monitoring of Market Power The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems," Cambridge Working Papers in Economics 0504, Faculty of Economics, University of Cambridge.
    10. Hu, X. & Ralph, D. & Ralph, E.K. & Bardsley, P. & Ferris, M.C., 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Cambridge Working Papers in Economics 0470, Faculty of Economics, University of Cambridge.
    11. Helman, Udi, 2006. "Market power monitoring and mitigation in the US wholesale power markets," Energy, Elsevier, vol. 31(6), pages 877-904.
    12. Lamadrid, Alberto J. & Maneevitjit, Surin & Mount, Timothy D., 2016. "The economic value of transmission lines and the implications for planning models," Energy Economics, Elsevier, vol. 57(C), pages 1-15.
    13. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    14. Spiridonova, Olga, 2016. "Transmission capacities and competition in Western European electricity market," Energy Policy, Elsevier, vol. 96(C), pages 260-273.
    15. Guo, Nongchao & Lo Prete, Chiara, 2019. "Cross-product manipulation with intertemporal constraints: An equilibrium model," Energy Policy, Elsevier, vol. 134(C).
    16. Haas, R. & Auer, H., 2006. "The prerequisites for effective competition in restructured wholesale electricity markets," Energy, Elsevier, vol. 31(6), pages 857-864.
    17. Joskow, Paul L & Tirole, Jean, 1999. "Transmission Rights and Market Power on Electric Power Networks I: Financial Rights," CEPR Discussion Papers 2093, C.E.P.R. Discussion Papers.
    18. Alberto Orgaz & Antonio Bello & Javier Reneses, 2019. "A New Model to Simulate Local Market Power in a Multi-Area Electricity Market: Application to the European Case," Energies, MDPI, vol. 12(11), pages 1-15, May.
    19. Tanachai Limpaitoon, Yihsu Chen, and Shmuel S. Oren, 2014. "The Impact of Imperfect Competition in Emission Permits Trading on Oligopolistic Electricity Markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Richard Green, 2007. "Nodal pricing of electricity: how much does it cost to get it wrong?," Journal of Regulatory Economics, Springer, vol. 31(2), pages 125-149, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:32:y:2002:i:5:p:37-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.