IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i2p600-615.html
   My bibliography  Save this article

I nfrastructure M odels : Composable Multi-infrastructure Optimization in Julia

Author

Listed:
  • Russell Bent

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Byron Tasseff

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

  • Carleton Coffrin

    (Los Alamos National Laboratory, Los Alamos, New Mexico 87545)

Abstract

In recent years, there has been an increasing need to understand the complex interdependencies between critical infrastructure systems, for example, electric power, natural gas, and potable water. Whereas open-source and commercial tools for the independent simulation of these systems are well established, frameworks for cosimulation with other systems are nascent and tools for co-optimization are scarce—the major challenge being the hidden combinatorics that arise when connecting multiple-infrastructure system models. Building toward a comprehensive solution for modeling interdependent infrastructure systems, this work presents I nfrastructure M odels , an extensible, open-source mathematical programming framework for co-optimizing multiple interdependent infrastructures. This work provides new insights into methods and programming abstractions that make state-of-the-art independent infrastructure models composable with minimal additional effort. To that end, this paper presents the design of the I nfrastructure M odels framework, documents key components of the software’s implementation, and demonstrates its effectiveness with three case studies on canonical co-optimization tasks arising in interdependent infrastructure systems.

Suggested Citation

  • Russell Bent & Byron Tasseff & Carleton Coffrin, 2024. "I nfrastructure M odels : Composable Multi-infrastructure Optimization in Julia," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 600-615, March.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:600-615
    DOI: 10.1287/ijoc.2022.0118
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0118
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    2. Vieira, Bruno S. & Mayerle, Sérgio F. & Campos, Lucila M.S. & Coelho, Leandro C., 2020. "Optimizing drinking water distribution system operations," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1035-1050.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    2. Fambri, Gabriele & Diaz-Londono, Cesar & Mazza, Andrea & Badami, Marco & Sihvonen, Teemu & Weiss, Robert, 2022. "Techno-economic analysis of Power-to-Gas plants in a gas and electricity distribution network system with high renewable energy penetration," Applied Energy, Elsevier, vol. 312(C).
    3. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    4. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    5. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.
    6. Ordoudis, Christos & Delikaraoglou, Stefanos & Kazempour, Jalal & Pinson, Pierre, 2020. "Market-based coordination of integrated electricity and natural gas systems under uncertain supply," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1105-1119.
    7. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.
    8. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    9. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    10. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    11. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    12. Binning Fan & Longji Hu & Zhiguo Fan & Aifeng Liu & Lijun Yan & Fengjuan Xie & Zhenyu Liu, 2023. "Economic-emission–constrained multi-objective hybrid optimal energy flow of integrated energy systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 265-272.
    13. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Terrence W. K. Mak & Pascal Van Hentenryck & Anatoly Zlotnik & Russell Bent, 2019. "Dynamic Compressor Optimization in Natural Gas Pipeline Systems," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 40-65, February.
    15. Bao, Shiyuan & Yang, Zhifang & Guo, Lin & Yu, Juan & Dai, Wei, 2020. "One-segment linearization modeling of electricity-gas system optimization," Energy, Elsevier, vol. 197(C).
    16. Wei, Qi & Zhou, Peng & Shi, Xunpeng, 2023. "The congestion cost of pipeline networks under third-party access in China's natural gas market," Energy, Elsevier, vol. 284(C).
    17. Wu, Gang & Xiang, Yue & Liu, Junyong & Gou, Jing & Shen, Xiaodong & Huang, Yuan & Jawad, Shafqat, 2020. "Decentralized day-ahead scheduling of multi-area integrated electricity and natural gas systems considering reserve optimization," Energy, Elsevier, vol. 198(C).
    18. Huang, Gang & Wang, Jianhui & Wang, Cheng & Guo, Chuangxin, 2021. "Cascading imbalance in coupled gas-electric energy systems," Energy, Elsevier, vol. 231(C).
    19. Belderbos, Andreas & Valkaert, Thomas & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William, 2020. "Facilitating renewables and power-to-gas via integrated electrical power-gas system scheduling," Applied Energy, Elsevier, vol. 275(C).
    20. Yang, Hanyu & Dou, Xun & Pan, Feng & Wu, Qiuwei & Li, Canbing & Zhou, Bin & Hao, Lili, 2022. "Optimal planning of local biomass-based integrated energy system considering anaerobic co-digestion," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:600-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.