IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i5p2736-2753.html
   My bibliography  Save this article

Projective Cutting-Planes for Robust Linear Programming and Cutting Stock Problems

Author

Listed:
  • Daniel Porumbel

    (CEDRIC, Conservatoire National des Arts et Métiers, Métropole du Grand Paris, Paris 75000, France)

Abstract

We explore the Projective Cutting-Planes algorithm proposed in Porumbel (2020) from new angles by applying it to two new problems, that is, to robust linear programming and to a cutting-stock problem with multiple lengths. Projective Cutting-Planes is a generalization of the widely used Cutting-Planes , and it aims at optimizing a linear function over a polytope P with prohibitively many constraints. The main new idea is to replace the well-known separation subproblem with the following projection subproblem : given an interior point x ∈ P and a direction d , find the maximum steplength t such that x + t d ∈ P . This enables one to generate a feasible solution at each iteration, a feature that does not exist built-in in a standard Cutting-Planes algorithm. The practical success of this new algorithm does not mainly come from the higher level ideas already presented in Porumbel (2020) . Its success is significantly more dependent on the computation time needed to solve the projection subproblem in practice. Thus, the main challenge addressed by the current paper is the design of new techniques for solving this subproblem very efficiently for different polytopes P . We first address a well-known robust linear programming problem in which P is defined as a primal polytope. We then solve a multiple-length cutting stock problem in which P is a dual polytope defined in a column generation model. Numerical experiments on both these new problems confirm the potential of the proposed ideas. This enables us to draw conclusions supported by numerical results from both the current paper and Porumbel (2020) while also gaining more insight into the dynamics of the algorithm. Summary of Contribution: The well-known Cutting-Planes algorithm relies on the separation subproblem to cut off the current optimal solution. This paper belongs to a line of work whose goal is to “upgrade” the widely used separation subproblem to the following projection subproblem: given a feasible solution x inside some polytope P and a direction d , what is the maximum t value such that x + td ∈ P . In simple terms, one has to “shoot” from x along direction d up to the point where the boundary of the polytope is hit. The greatest challenge is to solve this projection subproblem rapidly enough to compete well in terms of computational speed with the separation subproblem algorithm. This paper shows how to achieve this on two new problems: robust linear programming and multiple length cutting stock. The numerical results confirm one important advantage offered by the projection logic: it enables one to generate a new feasible interior solution ( i.e. , x + td ) at each iteration. The interior points thus generated actually guide the evolution of the overall algorithm, which is a feature that does not exist (built-in) in a traditional Cutting-Planes algorithm.

Suggested Citation

  • Daniel Porumbel, 2022. "Projective Cutting-Planes for Robust Linear Programming and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2736-2753, September.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:5:p:2736-2753
    DOI: 10.1287/ijoc.2022.1160
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1160
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    2. Daniel Porumbel & François Clautiaux, 2017. "Constraint Aggregation in Column Generation Models for Resource-Constrained Covering Problems," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 170-184, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    2. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    3. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    4. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    5. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    6. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    7. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    8. Oliver Faust & Jochen Gönsch & Robert Klein, 2017. "Demand-Oriented Integrated Scheduling for Point-to-Point Airlines," Transportation Science, INFORMS, vol. 51(1), pages 196-213, February.
    9. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    10. André Rossi & Alok Singh & Marc Sevaux, 2021. "Focus distance-aware lifetime maximization of video camera-based wireless sensor networks," Journal of Heuristics, Springer, vol. 27(1), pages 5-30, April.
    11. Flötteröd, Gunnar, 2017. "A search acceleration method for optimization problems with transport simulation constraints," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 239-260.
    12. Timo Gschwind & Stefan Irnich, 2012. "Effective Handling of Dynamic Time Windows and Synchronization with Precedences for Exact Vehicle Routing," Working Papers 1211, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. R. Montemanni & V. Leggieri, 2011. "A branch and price algorithm for the minimum power multicasting problem in wireless sensor networks," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 327-342, December.
    14. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    15. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.
    16. Yael Grushka-Cockayne & Bert De Reyck & Zeger Degraeve, 2008. "An Integrated Decision-Making Approach for Improving European Air Traffic Management," Management Science, INFORMS, vol. 54(8), pages 1395-1409, August.
    17. Jorge A. Sefair & Oscar Guaje & Andrés L. Medaglia, 2021. "A column-oriented optimization approach for the generation of correlated random vectors," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 777-808, September.
    18. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    19. C Alves & J M Valério de Carvalho, 2008. "New integer programming formulations and an exact algorithm for the ordered cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1520-1531, November.
    20. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:5:p:2736-2753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.