IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1320-1338.html
   My bibliography  Save this article

Characterizing Social TV Activity Around Televised Events: A Joint Topic Model Approach

Author

Listed:
  • Yuheng Hu

    (Department of Information and Decision Sciences, College of Business Administration, University of Illinois at Chicago, Chicago, Illinois 60607)

Abstract

Viewers often use social media platforms like Twitter to express their views about televised programs and events like the presidential debate, the Oscars, and the State of the Union speech. Although this promises tremendous opportunities to analyze the feedback on a program or an event using viewer-generated content on social media, there are significant technical challenges to doing so. Specifically, given a televised event and related tweets about this event, we need methods to effectively align these tweets and the corresponding event. In turn, this will raise many questions, such as how to segment the event and how to classify a tweet based on whether it is generally about the entire event or specifically about one particular event segment. In this paper, we propose and develop a novel joint Bayesian model that aligns an event and its related tweets based on the influence of the event’s topics. Our model allows the automated event segmentation and tweet classification concurrently. We present an efficient inference method for this model and a comprehensive evaluation of its effectiveness compared with the state-of-the-art methods. We find that the topics, segments, and alignment provided by our model are significantly more accurate and robust.

Suggested Citation

  • Yuheng Hu, 2021. "Characterizing Social TV Activity Around Televised Events: A Joint Topic Model Approach," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1320-1338, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1320-1338
    DOI: 10.1287/ijoc.2020.1038
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1038
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Forman & Anindya Ghose & Avi Goldfarb, 2009. "Competition Between Local and Electronic Markets: How the Benefit of Buying Online Depends on Where You Live," Management Science, INFORMS, vol. 55(1), pages 47-57, January.
    2. Jura Liaukonyte & Thales Teixeira & Kenneth C. Wilbur, 2015. "Television Advertising and Online Shopping," Marketing Science, INFORMS, vol. 34(3), pages 311-330, May.
    3. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    4. Randall Lewis & David Reiley, 2014. "Online ads and offline sales: measuring the effect of retail advertising via a controlled experiment on Yahoo!," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 235-266, September.
    5. Alejandro Zentner & Michael Smith & Cuneyd Kaya, 2013. "How Video Rental Patterns Change as Consumers Move Online," Management Science, INFORMS, vol. 59(11), pages 2622-2634, November.
    6. Danaher, Peter J. & Mullarkey, Guy W., 2003. "Factors Affecting Online Advertising Recall: A Study of Students," Journal of Advertising Research, Cambridge University Press, vol. 43(3), pages 252-267, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaxuan Ran & Jiani Liu & Yishi Zhang, 2023. "Integrating Users’ Contextual Engagements with Their General Preferences: An Interpretable Followee Recommendation Method," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 614-632, May.
    2. Margrét Vilborg Bjarnadóttir & Louiqa Raschid, 2023. "Modeling Financial Products and Their Supply Chains," INFORMS Joural on Data Science, INFORMS, vol. 2(2), pages 138-160, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Nian & Yuheng Hu & Cheng Chen, 2021. "Examining the Impact of Television-Program-Induced Emotions on Online Word-of-Mouth Toward Television Advertising," Information Systems Research, INFORMS, vol. 32(2), pages 605-632, June.
    2. Bayer, Emanuel & Srinivasan, Shuba & Riedl, Edward J. & Skiera, Bernd, 2020. "The impact of online display advertising and paid search advertising relative to offline advertising on firm performance and firm value," International Journal of Research in Marketing, Elsevier, vol. 37(4), pages 789-804.
    3. M. Serkan Akturk & Michael Ketzenberg, 2022. "Impact of Competitor Store Closures on a Major Retailer," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 715-730, February.
    4. Brett R Gordon & Kinshuk Jerath & Zsolt Katona & Sridhar Narayanan & Jiwoong Shin & Kenneth C Wilbur, 2019. "Inefficiencies in Digital Advertising Markets," Papers 1912.09012, arXiv.org, revised Feb 2020.
    5. Lesscher, Lisan & Lobschat, Lara & Verhoef, Peter C., 2021. "Do offline and online go hand in hand? Cross-channel and synergy effects of direct mailing and display advertising," International Journal of Research in Marketing, Elsevier, vol. 38(3), pages 678-697.
    6. Rex Yuxing Du & Mingyu Joo & Kenneth C. Wilbur, 2018. "Advertising and Brand Attitudes: Evidence from 575 Brands over Five Years," Papers 1810.07783, arXiv.org.
    7. Gonca Soysal & Lakshman Krishnamurthi, 2016. "How Does Adoption of the Outlet Channel Impact Customers’ Spending in the Retail Stores: Conflict or Synergy?," Management Science, INFORMS, vol. 62(9), pages 2692-2704, September.
    8. Santiago Gallino & Antonio Moreno & Ioannis Stamatopoulos, 2017. "Channel Integration, Sales Dispersion, and Inventory Management," Management Science, INFORMS, vol. 63(9), pages 2813-2831, September.
    9. Ratchford, Brian & Soysal, Gonca & Zentner, Alejandro & Gauri, Dinesh K., 2022. "Online and offline retailing: What we know and directions for future research," Journal of Retailing, Elsevier, vol. 98(1), pages 152-177.
    10. Mingfeng Lin & Henry C. Lucas & Galit Shmueli, 2013. "Research Commentary ---Too Big to Fail: Large Samples and the p -Value Problem," Information Systems Research, INFORMS, vol. 24(4), pages 906-917, December.
    11. Son, Jungmin & Kim, Jikyung (Jeanne) & Choi, Jeonghye & Kim, Mingyung, 2017. "Linking online niche sales to offline brand conditions," Journal of Business Research, Elsevier, vol. 70(C), pages 74-84.
    12. Qian Tang & Mei Lin & Youngsoo Kim, 2021. "Inter‐Retailer Channel Competition: Empirical Analyses of Store Entry Effects on Online Purchases," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2547-2563, August.
    13. Mei Xue & Lorin M. Hitt & Pei-yu Chen, 2011. "Determinants and Outcomes of Internet Banking Adoption," Management Science, INFORMS, vol. 57(2), pages 291-307, February.
    14. Necati Ertekin & Mehmet Gümüş & Mohammad E. Nikoofal, 2022. "Online-Exclusive or Hybrid? Channel Merchandising Strategies for Ship-to-Store Implementation," Management Science, INFORMS, vol. 68(8), pages 5828-5846, August.
    15. Rex Yuxing Du & Mingyu Joo & Kenneth C. Wilbur, 2019. "Advertising and brand attitudes: Evidence from 575 brands over five years," Quantitative Marketing and Economics (QME), Springer, vol. 17(3), pages 257-323, September.
    16. Reuber, A. Rebecca & Fischer, Eileen, 2011. "International entrepreneurship in internet-enabled markets," Journal of Business Venturing, Elsevier, vol. 26(6), pages 660-679.
    17. Mariani, Marcello M. & Fosso Wamba, Samuel, 2020. "Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies," Journal of Business Research, Elsevier, vol. 121(C), pages 338-352.
    18. Anindya Ghose & Avi Goldfarb & Sang Pil Han, 2013. "How Is the Mobile Internet Different? Search Costs and Local Activities," Information Systems Research, INFORMS, vol. 24(3), pages 613-631, September.
    19. Shun-Yang Lee & Julian Runge & Daniel Yoo & Yakov Bart & Anett Gyurak & J. W. Schneider, 2023. "COVID-19 Demand Shocks Revisited: Did Advertising Technology Help Mitigate Adverse Consequences for Small and Midsize Businesses?," Papers 2307.09035, arXiv.org, revised Jan 2024.
    20. Navdeep Sahni, 2015. "Effect of temporal spacing between advertising exposures: Evidence from online field experiments," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 203-247, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1320-1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.