IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y2020i2p303-320.html
   My bibliography  Save this article

Understanding the Impact of Individual Users’ Rating Characteristics on the Predictive Accuracy of Recommender Systems

Author

Listed:
  • Xiaoye Cheng

    (Department of Operations and Decision Technologies, Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Jingjing Zhang

    (Department of Operations and Decision Technologies, Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

  • Lu (Lucy) Yan

    (Department of Operations and Decision Technologies, Kelley School of Business, Indiana University, Bloomington, Indiana 47405)

Abstract

In this study, we investigate how individual users’ rating characteristics affect the user-level performance of recommendation algorithms. We measure users’ rating characteristics from three perspectives: rating value, rating structure, and neighborhood network embeddedness. We study how these three categories of measures influence the predictive accuracy of popular recommendation algorithms for each user. Our experiments use five real-world data sets with varying characteristics. For each individual user, we estimate the predictive accuracy of three recommendation algorithms. We then apply regression-based models to uncover the relationships between rating characteristics and recommendation performance at the individual user level. Our experimental results show consistent and significant effects of several rating measures on recommendation accuracy. Understanding how rating characteristics affect the recommendation performance at the individual user level has practical implications for the design of recommender systems.

Suggested Citation

  • Xiaoye Cheng & Jingjing Zhang & Lu (Lucy) Yan, 2020. "Understanding the Impact of Individual Users’ Rating Characteristics on the Predictive Accuracy of Recommender Systems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 303-320, April.
  • Handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:303-320
    DOI: 10.1287/ijoc.2018.0882
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0882
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zan Huang & Daniel Dajun Zeng, 2011. "Why Does Collaborative Filtering Work? Transaction-Based Recommendation Model Validation and Selection by Analyzing Bipartite Random Graphs," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 138-152, February.
    2. Sam Ransbotham & Gerald C. Kane & Nicholas H. Lurie, 2012. "Network Characteristics and the Value of Collaborative User-Generated Content," Marketing Science, INFORMS, vol. 31(3), pages 387-405, May.
    3. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    4. Lu (Lucy) Yan & Jianping Peng & Yong Tan, 2015. "Network Dynamics: How Can We Find Patients Like Us?," Information Systems Research, INFORMS, vol. 26(3), pages 496-512, September.
    5. Chungmok Lee & Minh Pham & Myong K. Jeong & Dohyun Kim & Dennis K. J. Lin & Wanpracha Art Chavalitwongse, 2015. "A Network Structural Approach to the Link Prediction Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 249-267, May.
    6. Rajdeep Grewal & Gary L. Lilien & Girish Mallapragada, 2006. "Location, Location, Location: How Network Embeddedness Affects Project Success in Open Source Systems," Management Science, INFORMS, vol. 52(7), pages 1043-1056, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    2. Yadav, Pratyush & Pervin, Nargis, 2022. "Towards efficient navigation in digital libraries: Leveraging popularity, semantics and communities to recommend scholarly articles," Journal of Informetrics, Elsevier, vol. 16(4).
    3. Feifei He & Chunhua Sun & Yezheng Liu, 2023. "What social characteristics enhance recommender systems? The effects of network embeddedness and preference heterogeneity," Electronic Commerce Research, Springer, vol. 23(3), pages 1807-1827, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifei He & Chunhua Sun & Yezheng Liu, 2023. "What social characteristics enhance recommender systems? The effects of network embeddedness and preference heterogeneity," Electronic Commerce Research, Springer, vol. 23(3), pages 1807-1827, September.
    2. Marios Kokkodis & Theodoros Lappas & Sam Ransbotham, 2020. "From Lurkers to Workers: Predicting Voluntary Contribution and Community Welfare," Information Systems Research, INFORMS, vol. 31(2), pages 607-626, June.
    3. Lu (Lucy) Yan & Jianping Peng & Yong Tan, 2015. "Network Dynamics: How Can We Find Patients Like Us?," Information Systems Research, INFORMS, vol. 26(3), pages 496-512, September.
    4. Gerald C. Kane & Sam Ransbotham, 2016. "Research Note—Content and Collaboration: An Affiliation Network Approach to Information Quality in Online Peer Production Communities," Information Systems Research, INFORMS, vol. 27(2), pages 424-439, June.
    5. Jingjing Zhang & Gediminas Adomavicius & Alok Gupta & Wolfgang Ketter, 2020. "Consumption and Performance: Understanding Longitudinal Dynamics of Recommender Systems via an Agent-Based Simulation Framework," Information Systems Research, INFORMS, vol. 31(1), pages 76-101, March.
    6. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    7. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    8. Xuan Yang & Xiao Li & Daning Hu & Harry Jiannan Wang, 2021. "Differential impacts of social influence on initial and sustained participation in open source software projects," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(9), pages 1133-1147, September.
    9. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    10. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    11. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    12. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    13. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.
    14. Shan, Wei & Qiao, Tong & Zhang, Mingli, 2020. "Getting more resources for better performance: The effect of user-owned resources on the value of user-generated content," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    15. Glòria Reig-Garcia & Cristina Bosch-Farré & Rosa Suñer-Soler & Dolors Juvinyà-Canal & Núria Pla-Vila & Rosa Noell-Boix & Esther Boix-Roqueta & Susana Mantas-Jiménez, 2021. "The Impact of a Peer Social Support Network from the Perspective of Women with Fibromyalgia: A Qualitative Study," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    16. Dequiedt, Vianney & Zenou, Yves, 2017. "Local and consistent centrality measures in parameterized networks," Mathematical Social Sciences, Elsevier, vol. 88(C), pages 28-36.
    17. Gandal Neil & Naftaliev Peter & Stettner Uriel, 2017. "Following the Code: Spillovers and Knowledge Transfer," Review of Network Economics, De Gruyter, vol. 16(3), pages 243-267, September.
    18. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    19. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    20. Mikko Jauho & Johanna Mäkelä & Mari Niva, 2016. "Demarcating Social Practices: The Case of Weight Management," Sociological Research Online, , vol. 21(2), pages 10-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:2020:i:2:p:303-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.