IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v31y2019i2p302-317.html
   My bibliography  Save this article

Solving Large Batches of Linear Programs

Author

Listed:
  • Ilbin Lee

    (Alberta School of Business, University of Alberta, Edmonton, Alberta T6G 2R6, Canada)

  • Stewart Curry

    (Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Nicoleta Serban

    (Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

Solving a large batch of linear programs (LPs) with varying parameters is needed in stochastic programming and sensitivity analysis, among other modeling frameworks. Solving the LPs for all combinations of given parameter values, called the brute-force approach, can be computationally infeasible when the parameter space is high-dimensional and/or the underlying LP is computationally challenging. This paper introduces a computationally efficient approach for solving a large number of LPs that differ only in the right-hand side of the constraints ( b of A x = b ). The computational approach builds on theoretical properties of the geometry of the space of critical regions, where a critical region is defined as the set of b ’s for which a basis is optimal. To formally support our computational approach we provide proofs of geometric properties of neighboring critical regions. We contribute to the existing theory of parametric programming by establishing additional results, providing deeper geometric understanding of critical regions. On the basis of the geometric properties of critical regions, we develop an algorithm that solves the LPs in batches by finding critical regions that contain multiple b ’s. Moreover, we suggest a data-driven version of our algorithm that uses the distribution (e.g., shape) of a sample of b ’s for which the LPs need to be solved. We empirically compared our approach and three other methods on various instances. The results show the efficiency of our approach in comparison with the other methods but also indicate some limitations of the algorithm.

Suggested Citation

  • Ilbin Lee & Stewart Curry & Nicoleta Serban, 2019. "Solving Large Batches of Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 302-317, April.
  • Handle: RePEc:inm:orijoc:v:31:y:2019:i:2:p:302-317
    DOI: 10.1287/ijoc.2018.0838
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2018.0838
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2018.0838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tomas Gal, 1975. "Rim Multiparametric Linear Programming," Management Science, INFORMS, vol. 21(5), pages 567-575, January.
    2. Harvey M. Wagner, 1995. "Global Sensitivity Analysis," Operations Research, INFORMS, vol. 43(6), pages 948-969, December.
    3. Stanley J. Garstka & David P. Rutenberg, 1973. "Computation in Discrete Stochastic Programs with Recourse," Operations Research, INFORMS, vol. 21(1), pages 112-122, February.
    4. Tomas Gal & Josef Nedoma, 1972. "Multiparametric Linear Programming," Management Science, INFORMS, vol. 18(7), pages 406-422, March.
    5. Ruszczynski, Andrzej & Swietanowski, Artur, 1997. "Accelerating the regularized decomposition method for two stage stochastic linear problems," European Journal of Operational Research, Elsevier, vol. 101(2), pages 328-342, September.
    6. GAL, Thomas & NEDOMA, Jozef, 1972. "Multiparametric linear programming," LIDAM Reprints CORE 115, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Filippi, Carlo & Romanin-Jacur, Giorgio, 2002. "Multiparametric demand transportation problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 206-219, June.
    8. A. Ruszczynski, 1993. "Regularized Decomposition of Stochastic Programs: Algorithmic Techniques and Numerical Results," Working Papers wp93021, International Institute for Applied Systems Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curry, Stewart & Lee, Ilbin & Ma, Simin & Serban, Nicoleta, 2022. "Global sensitivity analysis via a statistical tolerance approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 44-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iosif Pappas & Nikolaos A. Diangelakis & Efstratios N. Pistikopoulos, 2021. "The exact solution of multiparametric quadratically constrained quadratic programming problems," Journal of Global Optimization, Springer, vol. 79(1), pages 59-85, January.
    2. Richard Oberdieck & Martina Wittmann-Hohlbein & Efstratios Pistikopoulos, 2014. "A branch and bound method for the solution of multiparametric mixed integer linear programming problems," Journal of Global Optimization, Springer, vol. 59(2), pages 527-543, July.
    3. Martina Wittmann-Hohlbein & Efstratios Pistikopoulos, 2013. "On the global solution of multi-parametric mixed integer linear programming problems," Journal of Global Optimization, Springer, vol. 57(1), pages 51-73, September.
    4. C. Filippi, 2004. "An Algorithm for Approximate Multiparametric Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 120(1), pages 73-95, January.
    5. Efstratios Pistikopoulos & Luis Dominguez & Christos Panos & Konstantinos Kouramas & Altannar Chinchuluun, 2012. "Theoretical and algorithmic advances in multi-parametric programming and control," Computational Management Science, Springer, vol. 9(2), pages 183-203, May.
    6. Curry, Stewart & Lee, Ilbin & Ma, Simin & Serban, Nicoleta, 2022. "Global sensitivity analysis via a statistical tolerance approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 44-59.
    7. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    8. J. Spjøtvold & P. Tøndel & T. A. Johansen, 2007. "Continuous Selection and Unique Polyhedral Representation of Solutions to Convex Parametric Quadratic Programs," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 177-189, August.
    9. Filippi, Carlo & Romanin-Jacur, Giorgio, 2002. "Multiparametric demand transportation problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 206-219, June.
    10. Goldlücke, Susanne & Kranz, Sebastian, 2012. "Infinitely repeated games with public monitoring and monetary transfers," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1191-1221.
    11. Amir Akbari & Paul I. Barton, 2018. "An Improved Multi-parametric Programming Algorithm for Flux Balance Analysis of Metabolic Networks," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 502-537, August.
    12. Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2022. "An approximation algorithm for a general class of multi-parametric optimization problems," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1459-1494, October.
    13. F. Borrelli & A. Bemporad & M. Morari, 2003. "Geometric Algorithm for Multiparametric Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 118(3), pages 515-540, September.
    14. Styliani Avraamidou & Efstratios N. Pistikopoulos, 2019. "Multi-parametric global optimization approach for tri-level mixed-integer linear optimization problems," Journal of Global Optimization, Springer, vol. 74(3), pages 443-465, July.
    15. Charitopoulos, Vassilis M. & Dua, Vivek, 2017. "A unified framework for model-based multi-objective linear process and energy optimisation under uncertainty," Applied Energy, Elsevier, vol. 186(P3), pages 539-548.
    16. Cai, Tianxing & Zhao, Chuanyu & Xu, Qiang, 2012. "Energy network dispatch optimization under emergency of local energy shortage," Energy, Elsevier, vol. 42(1), pages 132-145.
    17. Throsby, C.D., 1973. "New Methodologies in Agricultural Production Economics: a Review," 1973 Conference, August 19-30, 1973, São Paulo, Brazil 181385, International Association of Agricultural Economists.
    18. Fabian J. Sting & Arnd Huchzermeier, 2012. "Dual sourcing: Responsive hedging against correlated supply and demand uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 69-89, February.
    19. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    20. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:31:y:2019:i:2:p:302-317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.