IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v12y2017i4p351-363.html
   My bibliography  Save this article

Operational Risk Measured by Bayesian Networks with a Poisson-Gamma Joint Distribution in a Financial Firm

Author

Listed:
  • Griselda Dávila-Aragón

    (Universidad Panamericana, Escuela de Ciencias Económicas y Empresariales)

  • Salvador Rivas-Aceves

    (Universidad Panamericana, Escuela de Gobierno y Economía)

  • Francisco Ortiz-Arango

    (Universidad Panamericana, Escuela de Ciencias Económicas y Empresariales)

Abstract

El objetivo es cuantificar requerimientos de capital y riesgo operacional mediante inferencia bayesiana, mediante un modelo de distribución conjunta Poisson-Gamma alimentado por información de expertos para una institución financiera mexicana. Simulaciones Monte Carlo basadas en intervalos del valor esperado del evento de pérdida muestran que: 1) El valor del riesgo operacional se puede obtener con información insuficiente con 95% de confianza, 2) las pérdidas esperadas tienden a aumentar cuando los sucesos que esperan los expertos también se incrementan, 3) hay una correlación positiva entre el riesgo operativo y los eventos esperados por los expertos, 4) la frecuencia y severidad de las pérdidas son más pequeñas al principio y luego crecen conforme el valor en riesgo operacional se acerca al óptimo, después ambos disminuyen nuevamente. Los resultados descritos dependen de los supuestos del modelo así como de la opinión de los expertos y la información disponible al interior de la firma. La metodología propuesta proporciona una medición avanzada del riesgo operativo, por lo que se puede formular una estrategia específica para que una empresa financiera evite pérdidas y asuma riesgo operacional.

Suggested Citation

  • Griselda Dávila-Aragón & Salvador Rivas-Aceves & Francisco Ortiz-Arango, 2017. "Operational Risk Measured by Bayesian Networks with a Poisson-Gamma Joint Distribution in a Financial Firm," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 12(4), pages 351-363, Octubre-D.
  • Handle: RePEc:imx:journl:v:12:y:2017:i:4:p:351-363
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/remef/article/view/233/294
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaoping Zhou & Rosella Giacometti & Frank J. Fabozzi & Ann H. Tucker, 2014. "Bayesian estimation of truncated data with applications to operational risk measurement," Quantitative Finance, Taylor & Francis Journals, vol. 14(5), pages 863-888, May.
    2. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaoping & Durfee, Antonina V. & Fabozzi, Frank J., 2016. "On stability of operational risk estimates by LDA: From causes to approaches," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 266-278.
    2. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    3. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    4. Peters, Gareth W. & Shevchenko, Pavel V. & Young, Mark & Yip, Wendy, 2011. "Analytic loss distributional approach models for operational risk from the α-stable doubly stochastic compound processes and implications for capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 565-579.
    5. Robert Jarrow & Jeff Oxman & Yildiray Yildirim, 2010. "The cost of operational risk loss insurance," Review of Derivatives Research, Springer, vol. 13(3), pages 273-295, October.
    6. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    7. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    8. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    9. Jianping Li & Lu Wei & Cheng-Few Lee & Xiaoqian Zhu & Dengsheng Wu, 2018. "Financial statements based bank risk aggregation," Review of Quantitative Finance and Accounting, Springer, vol. 50(3), pages 673-694, April.
    10. Mark Bentley & Alec Stephenson & Peter Toscas & Zili Zhu, 2020. "A Multivariate Model to Quantify and Mitigate Cybersecurity Risk," Risks, MDPI, vol. 8(2), pages 1-21, June.
    11. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    12. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    13. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    14. Stefan Strecker & David Heise & Ulrich Frank, 2011. "RiskM: A multi-perspective modeling method for IT risk assessment," Information Systems Frontiers, Springer, vol. 13(4), pages 595-611, September.
    15. Gonzalo, J. & Olmo, J., 2007. "The impact of heavy tails and comovements in downside-risk diversification," Working Papers 07/02, Department of Economics, City University London.
    16. Silvia Figini & Lijun Gao & Paolo Giudici, 2013. "Bayesian operational risk models," DEM Working Papers Series 047, University of Pavia, Department of Economics and Management.
    17. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    18. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    19. Ji, Jingru & Wang, Donghua & Xu, Dinghai & Xu, Chi, 2020. "Combining a self-exciting point process with the truncated generalized Pareto distribution: An extreme risk analysis under price limits," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 52-70.
    20. Tan, Yi Lin & Yusof, Mimi Syazwani & Mohd Ali, Nur Aqilah & Mohamed Azmi, Zahirah, 2018. "The Influence of Corporate Governance to the Firm Performance in Logistics Industry," MPRA Paper 86895, University Library of Munich, Germany.

    More about this item

    Keywords

    Bayesian Analysis; Gamma and Poisson Distributions; Operational Risk;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:12:y:2017:i:4:p:351-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.