IDEAS home Printed from https://ideas.repec.org/a/ime/imemes/v21y2003i1p105-143.html
   My bibliography  Save this article

The Effectiveness of Forecasting Methods Using Multiple Information Variables

Author

Listed:
  • Kitamura, Tomiyuki

    (Institute for Monetary & Econ Studies, Bank of Japan)

  • Koike, Ryoji

    (Institute for Monetary & Econ Studies, Bank of Japan)

Abstract

This paper examines the effectiveness of forecasting methods using multiple information variables in forecasting the rate of changes in the consumer price index (CPI) and real GDP in Japan, and investigates the background of forecast performance improvement and its limitations. We first examine the performance of forecasts that use individual information variables as well as forecasts that use multiple information variables. The results show that no single variable improves forecasts in all periods for either CPI or GDP, but combining the information from individual forecasts can lead to a stable forecast performance. Next, to explore the backdrop to these improvements in forecast performance, we decompose and analyze the forecast error of forecast combinations using a simple mean. We discover that the irregular movements of forecast errors generally cancel each other out, which in turn leads to a reduction in errors. At the same time, the effect of reducing forecast errors rapidly diminishes with the addition of variables, and we verify that forecast performance stops improving after two to four variables are added. For this reason, it is necessary to consider both the performance of original forecast series that comprise the combination, and the combination of variables that best reduces the correlation among forecast error series to obtain the optimal combination of series.

Suggested Citation

  • Kitamura, Tomiyuki & Koike, Ryoji, 2003. "The Effectiveness of Forecasting Methods Using Multiple Information Variables," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 21(1), pages 105-143, February.
  • Handle: RePEc:ime:imemes:v:21:y:2003:i:1:p:105-143
    as

    Download full text from publisher

    File URL: http://www.imes.boj.or.jp/research/papers/english/me21-1-4.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    2. Assenmacher-Wesche, Katrin & Gerlach, Stefan & Sekine, Toshitaka, 2008. "Monetary factors and inflation in Japan," Journal of the Japanese and International Economies, Elsevier, vol. 22(3), pages 343-363, September.
    3. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ime:imemes:v:21:y:2003:i:1:p:105-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kinken (email available below). General contact details of provider: https://edirc.repec.org/data/imegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.