IDEAS home Printed from https://ideas.repec.org/a/ijs/journl/v0y2024i40p208-221.html
   My bibliography  Save this article

Forecasting Performance Comparison With Panel Data Models: Environmental Kuznets Curve Analysis

Author

Listed:
  • Mücella Şahin

    (Marmara Üniversitesi, Sosyal Bilimler Enstitüsü, Ekonometri Doktora Programı, İstanbul, Türkiye)

  • Turgut Ün

    (Marmara Üniversitesi, İktisat Fakültesi, Ekonometri Bölümü, İstanbul, Türkiye)

Abstract

In this study, forecast analysis was conducted on the basis of different panel data structures and predictors. Panel data models, constructed within the framework of the Environmental Kuznets Curve, were developed using two separate unit groups: the G20 country group as heterogeneous panel data and the G8 country group as homogeneous panel data for the period 1990–2020. Subsequently, out-of-sample forecasts were obtained using a fixed effects predictor, a random effects predictor, and combined forecasting methods, and the performances of these forecasts were compared. Forecast values were estimated for out-of-sample 1 year, 3 years, and a 3-year average. Forecast performances were evaluated using the mean squared error and root mean squared error. As a result, it was found that, in line with the literature, homogeneous predictors exhibited better performance. In addition, it was observed that the forecast obtained with the fixed effects predictor in the homogeneous panel data structure performed better, whereas the forecast obtained with the random effects predictor in the heterogeneous panel data structure performed better. The combined forecast in the homogeneous panel data structure was better than the forecast obtained with the random effects predictor, whereas in the heterogeneous panel data structure, the forecast obtained with the fixed effects predictor performed worse than the combined forecasting method. In this study, the combined forecasting method developed by Huang (2019) was examined, and its performance was compared with other forecasting methods. Another perspective of this study was to examine the performance of the combined forecasting method under different heterogeneity and endogeneity conditions.

Suggested Citation

  • Mücella Şahin & Turgut Ün, 2024. "Forecasting Performance Comparison With Panel Data Models: Environmental Kuznets Curve Analysis," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul Journal of Economics-Istanbul Iktisat Dergisi, vol. 0(40), pages 208-221, June.
  • Handle: RePEc:ijs:journl:v:0:y:2024:i:40:p:208-221
    DOI: 10.26650/ekoist.2024.40.1469759
    as

    Download full text from publisher

    File URL: https://cdn.istanbul.edu.tr/file/JTA6CLJ8T5/ADCFCCB583E246878180185B722D293D
    Download Restriction: no

    File URL: https://iupress.istanbul.edu.tr/tr/journal/ekoist/article/panel-veri-modelleri-ile-ongoru-performans-kiyaslamasi-cevresel-kuznets-egrisi-analizi
    Download Restriction: no

    File URL: https://libkey.io/10.26650/ekoist.2024.40.1469759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2022. "Forecasting With Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity," CESifo Working Paper Series 9690, CESifo.
    2. Badi H. Baltagi & Georges Bresson & James M. Griffin & Alain Pirotte, 2003. "Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from French regional gasoline consumption," Empirical Economics, Springer, vol. 28(4), pages 795-811, November.
    3. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    4. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Orame, 2020. "The role of bank supply in the Italian credit market: evidence from a new regional survey," Temi di discussione (Economic working papers) 1279, Bank of Italy, Economic Research and International Relations Area.
    2. repec:zbw:bofitp:2010_015 is not listed on IDEAS
    3. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    4. Lien, Kristin & Tveterås, Ragnar & Tveterås, Sigbjørn, 2009. "The structure of herring product demand in Russia," UiS Working Papers in Economics and Finance 2009/23, University of Stavanger.
    5. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    6. Elhorst, J. Paul & Madre, Jean-Loup & Pirotte, Alain, 2020. "Car traffic, habit persistence, cross-sectional dependence, and spatial heterogeneity: New insights using French departmental data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 614-632.
    7. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    8. Badi H. Baltagi, 2008. "Forecasting with panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 153-173.
    9. Pock, Markus, 2007. "Gasoline and Diesel Demand in Europe: New Insights," Economics Series 202, Institute for Advanced Studies.
    10. Eshagh Mansourkiaee, 2023. "Estimating energy demand elasticities for gas exporting countries: a dynamic panel data approach," SN Business & Economics, Springer, vol. 3(1), pages 1-28, January.
    11. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
    12. Yuli Radev, 2012. "Empirical Analysis of Demand of Natural Gas by Households in Europe," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 154-183.
    13. Trapani, Lorenzo & Urga, Giovanni, 2009. "Optimal forecasting with heterogeneous panels: A Monte Carlo study," International Journal of Forecasting, Elsevier, vol. 25(3), pages 567-586, July.
    14. Horváth, Lajos & Trapani, Lorenzo, 2016. "Statistical inference in a random coefficient panel model," Journal of Econometrics, Elsevier, vol. 193(1), pages 54-75.
    15. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.
    16. Bettina Becker & Stephen Hall, 2013. "Do R&D strategies in high-tech sectors differ from those in low-tech sectors? An alternative approach to testing the pooling assumption," Economic Change and Restructuring, Springer, vol. 46(2), pages 183-202, May.
    17. Mohcine Bakhat & José M. Labeaga & Xavier Labandeira & Xiral Lñpez, 2013. "Economic Crisis and Elasticities of Car Fuels: Evidence for Spain," Working Papers fa15-2013, Economics for Energy.
    18. Herbert Brücker & Boriss Siliverstovs, 2006. "On the estimation and forecasting of international migration: how relevant is heterogeneity across countries?," Empirical Economics, Springer, vol. 31(3), pages 735-754, September.
    19. Eric Girardin & Konstantin A. Kholodilin, 2011. "How helpful are spatial effects in forecasting the growth of Chinese provinces?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(7), pages 622-643, November.
    20. Alain Pirotte & Jean-Loup Madre, 2011. "Determinants of Urban Sprawl in France," Urban Studies, Urban Studies Journal Limited, vol. 48(13), pages 2865-2886, October.
    21. Zimmer, Anne & Koch, Nicolas, 2017. "Fuel consumption dynamics in Europe: Tax reform implications for air pollution and carbon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 22-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijs:journl:v:0:y:2024:i:40:p:208-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ertugrul YASAR (email available below). General contact details of provider: https://edirc.repec.org/data/ifisttr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.