IDEAS home Printed from https://ideas.repec.org/a/ijb/journl/v9y2010i3p213-231.html
   My bibliography  Save this article

A Versatile Copula and Its Application to Risk Measures

Author

Listed:
  • Jeungbo Shim

    (Department of Business Administration, Illinois Wesleyan University, U.S.A.)

  • Eun-Joo Lee

    (Department of Mathematics, Millikin University, U.S.A.)

  • Seung-Hwan Lee

    (Department of Mathematics and Computer Science, Illinois Wesleyan University, U.S.A.)

Abstract

This paper proposes a copula that has versatile properties. We apply grouped t and versatile t copulas to estimate Value at Risk and expected shortfall using a sample of firms in the US property-liability insurance industry. We perform goodness-of-fit tests to assess the adequacy of the copula models selected. We find that a versatile copula is effective in estimating dependence structures of non-homogeneous multivariate risks.

Suggested Citation

  • Jeungbo Shim & Eun-Joo Lee & Seung-Hwan Lee, 2010. "A Versatile Copula and Its Application to Risk Measures," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 9(3), pages 213-231, December.
  • Handle: RePEc:ijb:journl:v:9:y:2010:i:3:p:213-231
    as

    Download full text from publisher

    File URL: https://ijbe.fcu.edu.tw/assets/ijbe/past_issue/No.09-3/pdf/vol_9-3-3.pdf
    Download Restriction: no

    File URL: https://ijbe.fcu.edu.tw/assets/ijbe/past_issue/No.09-3/abstract/03.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    2. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    3. Lee, Seung-Hwan, 2007. "On the versatility of the combination of the weighted log-rank statistics," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6557-6564, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2020. "Goodness-of-fit testing for copulas: A distribution-free approach," Other publications TiSEM 211b2be9-b46e-41e2-9b95-1, Tilburg University, School of Economics and Management.
    2. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    3. Hofert, Marius & Oldford, Wayne, 2018. "Visualizing dependence in high-dimensional data: An application to S&P 500 constituent data," Econometrics and Statistics, Elsevier, vol. 8(C), pages 161-183.
    4. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    5. Gong Chen & Hartmut Fricke & Ostap Okhrin & Judith Rosenow, 2022. "Importance of Weather Conditions in a Flight Corridor," Stats, MDPI, vol. 5(1), pages 1-27, March.
    6. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
    7. Gregor Weiß, 2013. "Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 179-202, August.
    8. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    9. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    10. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    11. Can, S.U. & Einmahl, John & Laeven, R.J.A., 2017. "Asymptotically Distribution-Free Goodness-of-Fit Testing for Copulas," Discussion Paper 2017-052, Tilburg University, Center for Economic Research.
    12. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    13. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    14. Brodsky, Boris & Penikas, Henry & Safaryan, Irina, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    15. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    16. Bruno Rémillard, 2017. "Goodness-of-Fit Tests for Copulas of Multivariate Time Series," Econometrics, MDPI, vol. 5(1), pages 1-23, March.
    17. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    18. Anna CZAPKIEWICZ & Pawel MAJDOSZ, 2014. "Grouping Stock Markets with Time-Varying Copula-GARCH Model," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 64(2), pages 144-159, March.
    19. Yiran Chen & Giray Ökten, 2022. "A goodness-of-fit test for copulas based on the collision test," Statistical Papers, Springer, vol. 63(5), pages 1369-1385, October.
    20. Boris Brodsky & Henry Penikas & Irina Safaryan, 2012. "Copula structural shift identification," HSE Working papers WP BRP 05/FE/2012, National Research University Higher School of Economics.

    More about this item

    Keywords

    dependence structure; versatility; grouped t copula; value at risk;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijb:journl:v:9:y:2010:i:3:p:213-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Szu-Hsien Ho (email available below). General contact details of provider: https://edirc.repec.org/data/cbfcutw.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.