Valuation of Standard Options under the Constant Elasticity of Variance Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(4), pages 533-554, November.
- Beckers, Stan, 1980. "The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-673, June.
- Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
- repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
- Hi Jun Choe & Jeong Ho Chu & So Jeong Shin, 2014. "Recombining binomial tree for constant elasticity of variance process," Papers 1410.5955, arXiv.org.
- U Hou Lok & Yuh-Dauh Lyuu, 2022. "A Valid and Efficient Trinomial Tree for General Local-Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 817-832, October.
- U Hou Lok & Yuh‐Dauh Lyuu, 2020. "Efficient trinomial trees for local‐volatility models in pricing double‐barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(4), pages 556-574, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
- Aricson Cruz & José Carlos Dias, 2020. "Valuing American-style options under the CEV model: an integral representation based method," Review of Derivatives Research, Springer, vol. 23(1), pages 63-83, April.
- Veld, C.H. & Verboven, A.H.F., 1993.
"An empirical analysis of warrant prices versus long term call option prices,"
Research Memorandum
FEW 594, Tilburg University, School of Economics and Management.
- Veld, C.H. & Verboven, A.H.F., 1993. "An empirical analysis of warrant prices versus long term call option prices," Other publications TiSEM f7168f53-297f-409c-807c-9, Tilburg University, School of Economics and Management.
- Tian, Yisong Sam, 1998. "A Trinomial Option Pricing Model Dependent on Skewness and Kurtosis," International Review of Economics & Finance, Elsevier, vol. 7(3), pages 315-330.
- Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
- Hi Jun Choe & Jeong Ho Chu & So Jeong Shin, 2014. "Recombining binomial tree for constant elasticity of variance process," Papers 1410.5955, arXiv.org.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
- DiCesare, Joe & Mcleish, Don, 2008. "Simulation of jump diffusions and the pricing of options," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 316-326, December.
- Ter Horst, J.R. & Veld, C.H., 2002.
"Behavioral Preferences for Individual Securities : The Case for Call Warrants and Call Options,"
Discussion Paper
2002-95, Tilburg University, Center for Economic Research.
- Ter Horst, J.R. & Veld, C.H., 2002. "Behavioral Preferences for Individual Securities : The Case for Call Warrants and Call Options," Other publications TiSEM 06981751-3bba-4b81-ac6d-7, Tilburg University, School of Economics and Management.
- Fuzhou Gong & Ting Wang, 2022. "The Variable Volatility Elasticity Model from Commodity Markets," Papers 2203.09177, arXiv.org.
- Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
- David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
- Campi, L. & Polbennikov, S.Y. & Sbuelz, A., 2005. "Assessing Credit with Equity : A CEV Model with Jump to Default," Discussion Paper 2005-27, Tilburg University, Center for Economic Research.
- Campi, L. & Sbuelz, A., 2005. "Close-Form Pricing of Benchmark Equity Default Swaps Under the CEV Assumption," Discussion Paper 2005-28, Tilburg University, Center for Economic Research.
- Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.
- Kung, James J. & Lee, Lung-Sheng, 2009. "Option pricing under the Merton model of the short rate," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 378-386.
- Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.
- Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
- Davide Lauria & W. Brent Lindquist & Svetlozar T. Rachev & Yuan Hu, 2023. "Unifying Market Microstructure and Dynamic Asset Pricing," Papers 2304.02356, arXiv.org, revised Feb 2024.
More about this item
Keywords
binomial model; constant elasticity of variance model; option pricingtakeovers;All these keywords.
JEL classification:
- G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijb:journl:v:4:y:2005:i:2:p:157-165. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Szu-Hsien Ho (email available below). General contact details of provider: https://edirc.repec.org/data/cbfcutw.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.