IDEAS home Printed from https://ideas.repec.org/a/igg/jwsr00/v12y2015i4p48-62.html
   My bibliography  Save this article

A Pagerank-Inspired Heuristic Scheme for Influence Maximization in Social Networks

Author

Listed:
  • Bo Zhang

    (Nanjing University of Posts and Telecommunications, Nanjing, China)

  • Yufeng Wang

    (Nanjing University of Posts and Telecommunications, Nanjing, China)

  • Qun Jin

    (China Jiliang University, Hangzhou, China & Waseda University, Tokyo, Japan)

  • Jianhua Ma

    (Hosei University, Tokyo, Japan)

Abstract

This article focused on seeking a new heuristic algorithm for the influence maximization problem in complex social networks, in which a small subset of individuals are intentionally selected as seeds to trigger a large cascade of further adoptions of a new behavior under certain influence cascade models. In literature, degree and other centrality-based heuristics are commonly used to estimate the influential power of individuals in social networks. The major issues with degree-based heuristics are twofold. First, those results are only derived for the uniform IC model, in which propagation probabilities on all social links are set as same, which is rarely the case in reality; Second, intuitively, an individual's influence power depends not only on the number of direct friends, but also relates to kinds of those friends, that is, the neighbors' influence should also be taken into account when measuring one's influential power. Based on the general weighted cascade model (WC), this article proposes Pagerank-inspired heuristic scheme, PRDiscount, which explicitly discounts the influence power of those individuals who have social relationships with chosen seeds, to alleviate the “overlapping effect” occurred in behavior diffusion. Then, the authors use both the artificially constructed social network graphs (with the features of power-law degree distribution and small-world characteristics) and the real-data traces of social networks to verify the performance of their proposal. Simulations illustrate that PRDiscount can advantage over the existing degree-based discount algorithm, DegreeDiscount, and achieve the comparable performance as greedy algorithm.

Suggested Citation

  • Bo Zhang & Yufeng Wang & Qun Jin & Jianhua Ma, 2015. "A Pagerank-Inspired Heuristic Scheme for Influence Maximization in Social Networks," International Journal of Web Services Research (IJWSR), IGI Global, vol. 12(4), pages 48-62, October.
  • Handle: RePEc:igg:jwsr00:v:12:y:2015:i:4:p:48-62
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWSR.2015100104
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiming Liu & Longxin Wang & Yunsong Jia & Ziwen Li & Hongju Gao, 2021. "Dynamic Influence Ranking Algorithm Based on Musicians’ Social and Personal Information Network," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    2. Wang, Qiyao & Jin, Yuehui & Cheng, Shiduan & Yang, Tan, 2017. "ConformRank: A conformity-based rank for finding top-k influential users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 39-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jwsr00:v:12:y:2015:i:4:p:48-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.