IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i20p2630-d659034.html
   My bibliography  Save this article

Dynamic Influence Ranking Algorithm Based on Musicians’ Social and Personal Information Network

Author

Listed:
  • Yiming Liu

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Longxin Wang

    (College of Engineering, China Agricultural University, Beijing 100083, China)

  • Yunsong Jia

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Ziwen Li

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Hongju Gao

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

Abstract

Social influence analysis is a very popular research direction. This article analyzes the social network of musicians and the many influencing factors when musicians create music to rank the influence of musicians. In order to achieve the practical purpose of the model making accurate predictions in the broad music market, the algorithm adopts a macromodel and considers the social network topology network. The article adds the time decay function and the weight of genre influence to the traditional PageRank algorithm, and thus, the MRGT (Musician Ranking based on Genre and Time) algorithm appears. Considering the timeliness of social networks and the continuous development of music, we realized the importance of evolving MRGT into a dynamic social network. Therefore, we adopted audio data analysis technology and used Gaussian distance to classify and study the evolution of music properties at different times and different genres and finally formed the dynamic influence ranking algorithm based on musicians’ social and personal information networks. As a macromodel heuristic algorithm, our model is explanatory, can handle batch data and can avoid unfavorable factors, so as to provide fast speed and improved accuracy. The network can obtain an era indicator DMI (Dynamic Music Influence) that measures the degree of music revolution. DMI is the indicator we provide for music companies to invest in musicians.

Suggested Citation

  • Yiming Liu & Longxin Wang & Yunsong Jia & Ziwen Li & Hongju Gao, 2021. "Dynamic Influence Ranking Algorithm Based on Musicians’ Social and Personal Information Network," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2630-:d:659034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/20/2630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/20/2630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leon du Toit, 2008. "Optimal HP filtering for South Africa," Working Papers 07/2008, Stellenbosch University, Department of Economics.
    2. Xia, Ling-Ling & Jiang, Guo-Ping & Song, Bo & Song, Yu-Rong, 2015. "Rumor spreading model considering hesitating mechanism in complex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 295-303.
    3. Suman Kumar Saha & R. Kar & D. Mandal & S. P. Ghoshal, 2013. "A Novel Firefly Algorithm for Optimal Linear Phase FIR Filter Design," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 4(2), pages 29-48, April.
    4. Li, Pei & Liu, Ke & Li, Keqin & Liu, Jianxun & Zhou, Dong, 2021. "Estimating user influence ranking in independent cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Maymin, Philip, 2012. "Music and the market: Song and stock volatility," The North American Journal of Economics and Finance, Elsevier, vol. 23(1), pages 70-85.
    6. Bo Zhang & Yufeng Wang & Qun Jin & Jianhua Ma, 2015. "A Pagerank-Inspired Heuristic Scheme for Influence Maximization in Social Networks," International Journal of Web Services Research (IJWSR), IGI Global, vol. 12(4), pages 48-62, October.
    7. Zhao, Laijun & Xie, Wanlin & Gao, H. Oliver & Qiu, Xiaoyan & Wang, Xiaoli & Zhang, Shuhai, 2013. "A rumor spreading model with variable forgetting rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 6146-6154.
    8. Xiaxia Zhao & Jianzhong Wang, 2013. "Dynamical Model about Rumor Spreading with Medium," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinling & Jiang, Haijun & Ma, Tianlong & Hu, Cheng, 2019. "Global dynamics of the multi-lingual SIR rumor spreading model with cross-transmitted mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 148-157.
    2. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun & Li, Jiarong, 2021. "Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    4. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    5. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    6. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    7. Shuzhen Yu & Zhiyong Yu & Haijun Jiang, 2022. "Stability, Hopf Bifurcation and Optimal Control of Multilingual Rumor-Spreading Model with Isolation Mechanism," Mathematics, MDPI, vol. 10(23), pages 1-29, December.
    8. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    9. Ma, Jing & Zhu, He, 2018. "Rumor diffusion in heterogeneous networks by considering the individuals’ subjective judgment and diverse characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 276-287.
    10. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    11. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    12. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Chen Jianhong & Song Qinghua & Zhou Zhiyong, 2017. "Agent-Based Simulation of Rumor Propagation on Social Network Based on Active Immune Mechanism," Journal of Systems Science and Information, De Gruyter, vol. 5(6), pages 571-584, December.
    14. Xu, Hao & Li, Tao & Liu, Xiongding & Liu, Wenjin & Dong, Jing, 2019. "Spreading dynamics of an online social rumor model with psychological factors on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 234-246.
    15. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    16. Yao Hongxing & Gao Xiangyang, 2018. "SE2IR Invest Market Rumor Spreading Model Considering Hesitating Mechanism," Journal of Systems Science and Information, De Gruyter, vol. 7(1), pages 54-69, March.
    17. Tian, Yong & Ding, Xuejun, 2019. "Rumor spreading model with considering debunking behavior in emergencies," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    18. Hongying Xiao & Zhaofeng Li & Yuanyuan Zhang & Hong Lin & Yuxiao Zhao, 2023. "A Dual Rumor Spreading Model with Consideration of Fans versus Ordinary People," Mathematics, MDPI, vol. 11(13), pages 1-14, July.
    19. Lu, Peng & Yao, Qi & Lu, Pengfei, 2019. "Two-stage predictions of evolutionary dynamics during the rumor dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 349-369.
    20. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2630-:d:659034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.