IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v15y2024i1p1-26.html
   My bibliography  Save this article

A Two-Stage Robust Optimization for Reliable Logistics Network Design via Evolutionary Computation

Author

Listed:
  • Junqi He

    (Northeastern University, China)

  • Dongsheng Yang

    (Northeastern University, China)

  • Xin Wang

    (Northeastern University, China)

Abstract

This paper presents a novel two-stage robust optimization model for designing a dependable logistics network that integrates evolutionary computation techniques. The proposed model considers both the normal and disrupted states of the logistics network and seeks to reduce the overall network cost and operating time in different disruption situations. The challenge is a multi-objective optimization problem addressed using a hybrid evolutionary method that combines the advantages of the non-dominated sorting genetic algorithm with the large neighborhood search heuristic. Numerical experiments are conducted on various test instances to demonstrate the effectiveness and efficiency of the proposed model and algorithm. The results show that the proposed algorithm can generate robust and reliable logistics network designs resilient to disruptions and uncertainties, leading to significant improvements in logistics performance and cost savings compared to traditional methods.

Suggested Citation

  • Junqi He & Dongsheng Yang & Xin Wang, 2024. "A Two-Stage Robust Optimization for Reliable Logistics Network Design via Evolutionary Computation," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 15(1), pages 1-26, January.
  • Handle: RePEc:igg:jsir00:v:15:y:2024:i:1:p:1-26
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.354885
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    2. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    3. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    4. Pierrick Pelé & Julia Schulze & Selwyn Piramuthu & Wei Zhou, 2023. "IoT and Blockchain Based Framework for Logistics in Food Supply Chains," Information Systems Frontiers, Springer, vol. 25(5), pages 1743-1756, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    2. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Muhammad Rahies Khan & Amir Manzoor, 2021. "Application and Impact of New Technologies in the Supply Chain Management During COVID-19 Pandemic: A Systematic Literature Review," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(2), pages 277-292.
    4. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    5. Isabel Marques & Zélia Serrasqueiro & Fernanda Nogueira, 2021. "Managers’ Competences in Private Hospitals for Investment Decisions during the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    7. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    8. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    9. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    10. Surajit Bag & Muhammad Sabbir Rahman, 2024. "Navigating circular economy: Unleashing the potential of political and supply chain analytics skills among top supply chain executives for environmental orientation, regenerative supply chain practice," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 504-528, February.
    11. Chervenkova, Tanya & Ivanov, Dmitry, 2023. "Adaptation strategies for building supply chain viability: A case study analysis of the global automotive industry re-purposing during the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    12. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    13. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Sara Alonso-Muñoz & Rocío González-Sánchez & Cristina Siligardi & Fernando E. García-Muiña, 2021. "New Circular Networks in Resilient Supply Chains: An External Capital Perspective," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    15. Weili Yin & Wenxue Ran, 2023. "Explaining Firm Performance During the COVID-19 With fsQCA: The Role of Supply Network Complexity, Inventory Turns, and Geographic Dispersion," SAGE Open, , vol. 13(2), pages 21582440231, June.
    16. John Ayo Olaghere & Henry Egbezien Inegbedion & Faith Ogheneriode Osiobe, 2023. "The Implications of Digitalization in Retail Service Delivery on Circular Economy in Nigeria: An Exploratory Case Study," Sustainability, MDPI, vol. 15(17), pages 1-16, September.
    17. Ribašauskienė, Erika & Volkov, Artiom & Morkūnas, Mangirdas & Žičkienė, Agnė & Dabkiene, Vida & Štreimikienė, Dalia & Baležentis, Tomas, 2024. "Strategies for increasing agricultural viability, resilience and sustainability amid disruptive events: An expert-based analysis of relevance," Journal of Business Research, Elsevier, vol. 170(C).
    18. Bianco, Débora & Bueno, Adauto & Godinho Filho, Moacir & Latan, Hengky & Miller Devós Ganga, Gilberto & Frank, Alejandro G. & Chiappetta Jabbour, Charbel Jose, 2023. "The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19," International Journal of Production Economics, Elsevier, vol. 256(C).
    19. Liu, Ming & Ding, Yueyu & Chu, Feng & Dolgui, Alexandre & Zheng, Feifeng, 2024. "Robust actions for improving supply chain resilience and viability," Omega, Elsevier, vol. 123(C).
    20. Shafiee, Mohammad & Zare-Mehrjerdi, Yahia & Govindan, Kannan & Dastgoshade, Sohaib, 2022. "A causality analysis of risks to perishable product supply chain networks during the COVID-19 outbreak era: An extended DEMATEL method under Pythagorean fuzzy environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:15:y:2024:i:1:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.