IDEAS home Printed from https://ideas.repec.org/a/igg/joris0/v14y2023i1p1-17.html
   My bibliography  Save this article

Truck Fuel Consumption Prediction Using Logistic Regression and Artificial Neural Networks

Author

Listed:
  • Sheunesu Brandon Shamuyarira

    (National University of Science and Technology, Zimbabwe)

  • Trust Tawanda

    (National University of Science and Technology, Zimbabwe)

  • Elias Munapo

    (North West University, South Africa)

Abstract

Rising international oil costs and the transport industry's recovery from the effects of Covid-19 resulted in the efficient management of fuel by logistics companies becoming a significant concern. One way of managing this is by analyzing the fuel consumption of trucks so as to better utilize the costly resource. Twenty-three driving data variables were gathered from 210 freight trucks and analyzed this data. Relevant variables that impact truck fuel consumption were extracted from the initial 23 variables gathered using stepwise regression, and then a prediction model was built from the identified relevant variables utilizing a binary logistic regression model. In addition, a back propagation neural network was employed in this study to create a second model of truck fuel use, and comparisons between the two models were made. The outcomes showed that the binary logistic regression model and the back-propagated neural network model prediction accuracy were 68.4% and 77.2%, respectively.

Suggested Citation

  • Sheunesu Brandon Shamuyarira & Trust Tawanda & Elias Munapo, 2023. "Truck Fuel Consumption Prediction Using Logistic Regression and Artificial Neural Networks," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 14(1), pages 1-17, January.
  • Handle: RePEc:igg:joris0:v:14:y:2023:i:1:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJORIS.329240
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maher Maalouf, 2011. "Logistic regression in data analysis: an overview," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 3(3), pages 281-299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amgad Muneer & Suliman Mohamed Fati, 2020. "A Comparative Analysis of Machine Learning Techniques for Cyberbullying Detection on Twitter," Future Internet, MDPI, vol. 12(11), pages 1-20, October.
    2. Sumita, Kazuto & Nakazawa, Katsuyoshi & Kawase, Akihiro, 2021. "Long-term care facilities and migration of elderly households in an aged society: Empirical analysis based on micro data," Journal of Housing Economics, Elsevier, vol. 53(C).
    3. Okoli Jude Emeka & Haslinda Nahazanan & Bahareh Kalantar & Zailani Khuzaimah & Ojogbane Success Sani, 2021. "Evaluation of the Effect of Hydroseeded Vegetation for Slope Reinforcement," Land, MDPI, vol. 10(10), pages 1-23, September.
    4. Carmen Patino-Alonso & Marta Gómez-Sánchez & Leticia Gómez-Sánchez & Benigna Sánchez Salgado & Emiliano Rodríguez-Sánchez & Luis García-Ortiz & Manuel A. Gómez-Marcos, 2022. "Predictive Ability of Machine-Learning Methods for Vitamin D Deficiency Prediction by Anthropometric Parameters," Mathematics, MDPI, vol. 10(4), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:joris0:v:14:y:2023:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.