Author
Listed:
- Leila Esmaeili
(University of Qom, Iran)
- Ramin Nasiri
(University of Tehran, Iran)
- Behrouz Minaei-Bidgoli
(Iran University of Science and Technology, Iran)
Abstract
The competition among manufacturers and service providing companies as well as the widespread presence of electronic processes has introduced new business models that need special e-Marketing. Social network marketing is one of the most recent types of marketing. Today, due to their flexibility and ease of use, social networks have fallen in the center of attention for users of various age groups. The variety of online social network groups, some of which are created with commercial goals, has made users uncertain and skeptical; on the other hand, in today’s competitive market, companies are seeking their potential and actual customers. To solve this problem, this paper introduced a group recommender system which, using data mining techniques and information theory, offers customized recommendations based on user preferences. Supposing that users in each group share similar characteristics, heterogeneous members are identified and removed. Unlike other methods, in special cases where the user does not have relationships with other members or when an activity history for the user does not exist, this method could yet offer recommendations.
Suggested Citation
Leila Esmaeili & Ramin Nasiri & Behrouz Minaei-Bidgoli, 2012.
"Applying Personalized Recommendation for Social Network Marketing,"
International Journal of Online Marketing (IJOM), IGI Global, vol. 2(1), pages 50-63, January.
Handle:
RePEc:igg:jom000:v:2:y:2012:i:1:p:50-63
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jom000:v:2:y:2012:i:1:p:50-63. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.