IDEAS home Printed from https://ideas.repec.org/a/igg/jismd0/v12y2021i2p1-16.html
   My bibliography  Save this article

A Deep Neural Network Model for Cross-Domain Sentiment Analysis

Author

Listed:
  • Suman Kumari

    (Swami Keshvanand Institute of Technology, Management, and Gramothan, Jaipur, India)

  • Basant Agarwal

    (Indian Institute of Information Technology, Kota, India)

  • Mamta Mittal

    (G.B. Pant Government Engineering College, New Delhi, India)

Abstract

Sentiment analysis is used to detect the opinion/sentiment expressed from the unstructured text. Most of the existing state-of-the-art methods are based on supervised learning, and therefore, a labelled dataset is required to build the model, and it is very difficult task to obtain a labelled dataset for every domain. Cross-domain sentiment analysis is to develop a model which is trained on labelled dataset of one domain, and the performance is evaluated on another domain. The performance of such cross-domain sentiment analysis is still very limited due to presence of many domain-related terms, and the sentiment analysis is a domain-dependent problem in which words changes their polarity depending upon the domain. In addition, cross-domain sentiment analysis model suffers with the problem of large number of out-of-the-vocabulary (unseen words) words. In this paper, the authors propose a deep learning-based approach for cross-domain sentiment analysis. Experimental results show that the proposed approach improves the performance on the benchmark dataset.

Suggested Citation

  • Suman Kumari & Basant Agarwal & Mamta Mittal, 2021. "A Deep Neural Network Model for Cross-Domain Sentiment Analysis," International Journal of Information System Modeling and Design (IJISMD), IGI Global, vol. 12(2), pages 1-16, April.
  • Handle: RePEc:igg:jismd0:v:12:y:2021:i:2:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJISMD.2021040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalin Vrabie, 2023. "E-Government 3.0: An AI Model to Use for Enhanced Local Democracies," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jismd0:v:12:y:2021:i:2:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.