IDEAS home Printed from https://ideas.repec.org/a/igg/jepr00/v6y2017i4p18-31.html
   My bibliography  Save this article

Social Media Data Analysis in Urban e-Planning

Author

Listed:
  • Pilvi Nummi

    (Aalto University, School of Engineering, Department of Built Environment, Espoo, Finland)

Abstract

Computational social media data analysis (SMDA) is opening up new possibilities for participatory urban planning. The aim of this study is to analyse what kind of computational methods can be used to analyse social media data to inform urban planning. A descriptive literature review of recent case study articles reveal that in this context SMDA has been applied mainly to location based social media data, such as geo-tagged Tweets, photographs and check-in data. There were only a few studies concerning the use of non-place-based data. Based on this review SMDA can provide planners with local knowledge about people's opinions, experiences, feelings, behaviour, and about the city structure. However, integration of this knowledge in planning and decision-making has not been completely successful in any of the cases. By way of a conclusion, a planning-led categorization of the SMDA method's tools and analysis results is suggested.

Suggested Citation

  • Pilvi Nummi, 2017. "Social Media Data Analysis in Urban e-Planning," International Journal of E-Planning Research (IJEPR), IGI Global, vol. 6(4), pages 18-31, October.
  • Handle: RePEc:igg:jepr00:v:6:y:2017:i:4:p:18-31
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEPR.2017100102
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilvi Nummi, 2018. "Crowdsourcing Local Knowledge with PPGIS and Social Media for Urban Planning to Reveal Intangible Cultural Heritage," Urban Planning, Cogitatio Press, vol. 3(1), pages 100-115.
    2. Fernando Santa & Roberto Henriques & JoaquĆ­n Torres-Sospedra & Edzer Pebesma, 2019. "A Statistical Approach for Studying the Spatio-Temporal Distribution of Geolocated Tweets in Urban Environments," Sustainability, MDPI, vol. 11(3), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jepr00:v:6:y:2017:i:4:p:18-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.