IDEAS home Printed from https://ideas.repec.org/a/igg/jeoe00/v11y2022i1p1-22.html
   My bibliography  Save this article

Oppositional GOA Applied to Renewable Energy-Based Multi-Objective Economic Emission Dispatch

Author

Listed:
  • Sunanda Hazra

    (Central Institute of Petrochemicals Engineering and Technology, Haldia, India)

  • Provas Kumar Roy

    (Kalyani Government Engineering College, Kalyani, India)

Abstract

The renewable economic emission transmit is a significant and new assignment in the modern power system. This article develops oppositional grasshopper optimization algorithm (OGOA) which depends on the social dealings of the grasshopper in nature, to solve renewable energy based economic emission dispatch (EED) considering uncertainty in wind power availability and a carbon tax on emission from the thermal unit. To speed up the convergence speed and advance the simulation results, opposition based learning (OBL) is integrated with the fundamental GOA in OGOA algorithm. To show the nonlinearity of wind power availability the Weibull distribution is used. A standard system, containing of two wind farms and six thermal units is used for testing the dispatch model for three different loads. The statistical outcomes of the applied OGOA technique are compared with basic GOA and quantum-inspired particle swarm optimization (QPSO) optimization. It is observed OGOA is more skillful than basic GOA technique for significantly reducing the computation time and developing hopeful outcomes.

Suggested Citation

  • Sunanda Hazra & Provas Kumar Roy, 2022. "Oppositional GOA Applied to Renewable Energy-Based Multi-Objective Economic Emission Dispatch," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 11(1), pages 1-22, January.
  • Handle: RePEc:igg:jeoe00:v:11:y:2022:i:1:p:1-22
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJEOE.295983
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandian Vasant & Utku Kose & Junzo Watada, 2017. "Metaheuristic Techniques in Enhancing the Efficiency and Performance of Thermo-Electric Cooling Devices," Energies, MDPI, vol. 10(11), pages 1-50, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Josimar Reyes-Campos & Giner Alor-Hernández & Isaac Machorro-Cano & José Oscar Olmedo-Aguirre & José Luis Sánchez-Cervantes & Lisbeth Rodríguez-Mazahua, 2021. "Discovery of Resident Behavior Patterns Using Machine Learning Techniques and IoT Paradigm," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    3. Wei He & Pengkun Yu & Zhongting Hu & Song Lv & Minghui Qin & Cairui Yu, 2019. "Experimental Study and Performance Analysis of a Portable Atmospheric Water Generator," Energies, MDPI, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jeoe00:v:11:y:2022:i:1:p:1-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.