IDEAS home Printed from https://ideas.repec.org/a/igg/jcac00/v11y2021i2p1-13.html
   My bibliography  Save this article

Detecting Compromised Social Network Accounts Using Deep Learning for Behavior and Text Analyses

Author

Listed:
  • Steven Yen

    (San Jose State University, USA)

  • Melody Moh

    (San Jose State University, USA)

  • Teng-Sheng Moh

    (San Jose State University, USA)

Abstract

Social networks allow people to connect to one another. Over time, these accounts become an essential part of one's online identity. The account stores various personal data and contains one's network of acquaintances. Attackers seek to compromise user accounts for various malicious purposes, such as distributing spam, phishing, and much more. Timely detection of compromises becomes crucial for protecting users and social networks. This article proposes a novel system for detecting compromises of a social network account by considering both post behavior and textual content. A deep multi-layer perceptron-based autoencoder is leveraged to consolidate diverse features and extract underlying relationships. Experiments show that the proposed system outperforms previous techniques that considered only behavioral information. The authors believe that this work is well-timed, significant especially in the world that has been largely locked down by the COVID-19 pandemic and thus depends much more on reliable social networks to stay connected.

Suggested Citation

  • Steven Yen & Melody Moh & Teng-Sheng Moh, 2021. "Detecting Compromised Social Network Accounts Using Deep Learning for Behavior and Text Analyses," International Journal of Cloud Applications and Computing (IJCAC), IGI Global, vol. 11(2), pages 1-13, April.
  • Handle: RePEc:igg:jcac00:v:11:y:2021:i:2:p:1-13
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCAC.2021040106
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jcac00:v:11:y:2021:i:2:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.