IDEAS home Printed from https://ideas.repec.org/a/ids/ijsoma/v29y2018i1p59-84.html
   My bibliography  Save this article

A Pareto-based approach to optimise aggregate production planning problem considering reliable supplier selection

Author

Listed:
  • Arash Nobari
  • AmirSaman Khierkhah
  • Vahid Hajipour

Abstract

This work presents a multi objective model for a multi-product, multi-site aggregate production planning (APP) problem in a supply chain. The objectives are: 1) minimising the total cost of supply chain including inventory costs, manufacturing costs, work force costs, hiring, and firing costs; 2) maximising the reliability of the supply chain's production plan with regard to the selection of reliable facilities which have probabilistic lead times. Based on the complexity of the proposed model, two Pareto-based multi-objective metaheuristic algorithms including multi-objective imperialist competitive algorithm (MOICA) and non-dominated sorting genetic algorithm (NSGA-II) were applied to solve the proposed model. In order to evaluate the results, several numerical examples were generated, by which the algorithms were analysed statistically and graphically.

Suggested Citation

  • Arash Nobari & AmirSaman Khierkhah & Vahid Hajipour, 2018. "A Pareto-based approach to optimise aggregate production planning problem considering reliable supplier selection," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 29(1), pages 59-84.
  • Handle: RePEc:ids:ijsoma:v:29:y:2018:i:1:p:59-84
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=88473
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongli Wang & Yujing Huang & Yudong Wang & Haiyang Yu & Ruiwen Li & Shanshan Song, 2018. "Energy Management for Smart Multi-Energy Complementary Micro-Grid in the Presence of Demand Response," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. L. Herlina & Machfud & E. Anggraeni & Sukardi, 2019. "Pareto-based algorithm for adaptive aggregate production and distribution planning in shrimp agroindustry supply chain," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 5(1), pages 21-29.
    3. Rukundo Jean D'amour & Mukamuhirwa Floride & Nsigaye Alfred, 2020. "Effect of organic, inorganic fertilizers and their combination on vegetative growth and production of common bush beans RWR2245 variety in Rwanda," Journal of Applied and Physical Sciences, Prof. Vakhrushev Alexander, vol. 6(1), pages 18-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijsoma:v:29:y:2018:i:1:p:59-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=150 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.