IDEAS home Printed from https://ideas.repec.org/a/ids/ijilea/v36y2024i5p1-15.html
   My bibliography  Save this article

A survey on predicting at-risk students through learning analytics

Author

Listed:
  • Kam Cheong Li
  • Billy Tak-Ming Wong
  • Maggie Liu

Abstract

This paper analyses the adoption of learning analytics to predict at-risk students. A total of 233 research articles between 2004 and 2023 were collected from Scopus for this study. They were analysed in terms of the relevant types and sources of data, targets of prediction, learning analytics methods, and performance metrics. The results show that data related to students' academic performance, socio-demographics, and learning behaviours have been commonly collected. Most studies have addressed the identification of students who have a higher chance of poor academic performance or dropping out of their courses. Decision trees, random forests, and artificial neural networks are the most frequently used techniques for prediction, with ensemble methods gaining popularity in recent years. Classification accuracy, recall, sensitivity, and true positive rate are commonly used as performance metrics for evaluation. The results reveal the potential of learning analytics for informing timely and evidence-based support for at-risk students.

Suggested Citation

  • Kam Cheong Li & Billy Tak-Ming Wong & Maggie Liu, 2024. "A survey on predicting at-risk students through learning analytics," International Journal of Innovation and Learning, Inderscience Enterprises Ltd, vol. 36(5), pages 1-15.
  • Handle: RePEc:ids:ijilea:v:36:y:2024:i:5:p:1-15
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=140170
    Download Restriction: Open Access
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijilea:v:36:y:2024:i:5:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=57 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.