IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v3y2005i1-2p66-84.html
   My bibliography  Save this article

The isoengine: realisation of a high-efficiency power cycle based on isothermal compression

Author

Listed:
  • Claus Linnemann
  • Mike W. Coney

Abstract

A novel high-efficiency internal combustion engine for power generation and direct-drive applications is being developed. Distillate-fuelled power plants in units of 7 MW electrical output are predicted to reach a net electrical efficiency of 60%. An efficiency of 58% is targeted for the gas-fired version. This compares with a net electrical efficiency of about 45% for advanced reciprocating engines of similar output but conventional design, and represents a step change in the efficiency of distributed power plant. Besides distillate oil and natural gas, the engine will be able to use suitable biofuels for efficient power generation. A 3 MW prototype engine using the full-scale engine geometry has been built to confirm the performance of the isoengine cycle. A partnership agreement has been signed by RWE Innogy and Mitsui Engineering and Shipbuilding for the future testing and development of the engine.

Suggested Citation

  • Claus Linnemann & Mike W. Coney, 2005. "The isoengine: realisation of a high-efficiency power cycle based on isothermal compression," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 3(1/2), pages 66-84.
  • Handle: RePEc:ids:ijetpo:v:3:y:2005:i:1/2:p:66-84
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=6740
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Y.M. & Favrat, D., 2010. "Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system," Energy, Elsevier, vol. 35(1), pages 213-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:3:y:2005:i:1/2:p:66-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.