IDEAS home Printed from https://ideas.repec.org/a/ids/ijetpo/v12y2016i1p84-102.html
   My bibliography  Save this article

Academic landscape of hydropower: citation-analysis-based method and its application

Author

Listed:
  • Hajime Sasaki
  • Liu Zhidong
  • Ichiro Sakata

Abstract

Hydropower has superior storage capacity and speedy response to meet sudden fluctuations in electricity demand. According to a recent estimate by International Energy Agency (IEA), its generation capacity could double by 2050. Nevertheless, no great picture of academic knowledge exists in relation to hydropower. This study was undertaken to reveal the academic landscape in this field by analysing the citation network of papers published in academic journals. We collected 7,521 target papers from the Web of Science using a specific search query. Using a topological-based method, all the papers were categorised into clusters according to their own characteristic topics. Results show the existence of six principal research clusters: renewable energy, optimisation of system operation, environmental impact, fish management, water governance and hybrid solutions. Combining the analysis results, clusters were found related to 'small hydropower', 'Mekong Basin hydropower' and 'pumped-storage' are developing, as indicated by the recent increasing trend. Even in developing countries, policymakers should make policy with full access to that knowledge. Governments must prepare environments in which policymakers can access the latest knowledge and information related to their own countries.

Suggested Citation

  • Hajime Sasaki & Liu Zhidong & Ichiro Sakata, 2016. "Academic landscape of hydropower: citation-analysis-based method and its application," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 12(1), pages 84-102.
  • Handle: RePEc:ids:ijetpo:v:12:y:2016:i:1:p:84-102
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=74493
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Yang, Chi-Jen & Jackson, Robert B., 2011. "Opportunities and barriers to pumped-hydro energy storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 839-844, January.
    4. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    5. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    6. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    7. Mike Thelwall & Katie Vann & Ruth Fairclough, 2006. "Web issue analysis: An integrated water resource management case study," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(10), pages 1303-1314, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    3. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    6. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    7. Erren Yao & Huanran Wang & Long Liu & Guang Xi, 2014. "A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 8(1), pages 1-18, December.
    8. Aslan, Yilmaz & Arslan, Oguz & Yasar, Celal, 2008. "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renewable Energy, Elsevier, vol. 33(4), pages 791-801.
    9. Izadyar, Nima & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2016. "Resource assessment of the renewable energy potential for a remote area: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 908-923.
    10. Olivier Petit & Catherine Baron, 2009. "Integrated Water Resources Management: From general principles to its implementation by the state. The case of Burkina Faso," Natural Resources Forum, Blackwell Publishing, vol. 33(1), pages 49-59, February.
    11. Bahadori, Alireza & Zahedi, Gholamreza & Zendehboudi, Sohrab, 2013. "An overview of Australia's hydropower energy: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 565-569.
    12. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    13. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    14. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    15. Mensah, Johnson Herlich Roslee & Santos, Ivan Felipe Silva dos & Raimundo, Danielle Rodrigues & Costa de Oliveira Botan, Maria Cláudia & Barros, Regina Mambeli & Tiago Filho, Geraldo Lucio, 2022. "Energy and economic study of using Pumped Hydropower Storage with renewable resources to recover the Furnas reservoir," Renewable Energy, Elsevier, vol. 199(C), pages 320-334.
    16. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    17. Spänhoff, Bernd, 2014. "Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 518-525.
    18. Khan, Rakhshanda, 2015. "Small Hydro Power in India: Is it a sustainable business?," Applied Energy, Elsevier, vol. 152(C), pages 207-216.
    19. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    20. Nzotcha, Urbain & Kenfack, Joseph & Blanche Manjia, Marceline, 2019. "Integrated multi-criteria decision making methodology for pumped hydro-energy storage plant site selection from a sustainable development perspective with an application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 930-947.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijetpo:v:12:y:2016:i:1:p:84-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=12 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.