IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v1y2004i1p86-99.html
   My bibliography  Save this article

A method for the study of cascading effects within lifeline networks

Author

Listed:
  • Benoit Robert

Abstract

The following research is in keeping with the current international and national trend to establish effective facility management plans, based on antagonistic notions of maximal production and minimal risks. The application of this approach to lifeline networks is complex, considering that the failure of these networks can cause extensive consequences for populations and upon socio-economic activities. Effectively, lifeline networks are generally strongly interrelated, which favours the propagation of vulnerabilities from one network to another through cascading effects. A methodology has been developed in order to define, characterise and assess the transfer of vulnerability between lifeline networks. The methodology is based on three specific steps. We first perform an exhaustive assessment of the initial vulnerability and characterise its potential consequences. We then transfer these potential consequences to the other networks through cascading effects. Finally, the transferred consequences are defined as vulnerabilities. Such a methodology, which relies on a complete assessment of consequences, can only be carried out via consequence studies, rather than the usual scenario approaches, in order to evaluate all possible situations. We will present the three main steps of this methodology, which is currently centred on the precise definition of the links that bond the various networks. The consequence studies that we recommend will then be explained, followed by the presentation of a case study of a hydroelectric power generation network and a power transportation network. This example will allow us to validate the preceding concepts.

Suggested Citation

  • Benoit Robert, 2004. "A method for the study of cascading effects within lifeline networks," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 1(1), pages 86-99.
  • Handle: RePEc:ids:ijcist:v:1:y:2004:i:1:p:86-99
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=3798
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    2. Babak Omidvar & Mohammad Hojjati Malekshah & Hamed Omidvar, 2014. "Failure risk assessment of interdependent infrastructures against earthquake, a Petri net approach: case study—power and water distribution networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1971-1993, April.
    3. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    4. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    5. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    6. Galbusera, Luca & Trucco, Paolo & Giannopoulos, Georgios, 2020. "Modeling interdependencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    8. Alexander Fekete & Jakob Rhyner, 2020. "Sustainable Digital Transformation of Disaster Risk—Integrating New Types of Digital Social Vulnerability and Interdependencies with Critical Infrastructure," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    9. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:1:y:2004:i:1:p:86-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.