IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v11y2017i2p228-255.html
   My bibliography  Save this article

Waste collection under uncertainty: a simheuristic based on variable neighbourhood search

Author

Listed:
  • Aljoscha Gruler
  • Carlos L. Quintero-Araújo
  • Laura Calvet
  • Angel A. Juan

Abstract

Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]

Suggested Citation

  • Aljoscha Gruler & Carlos L. Quintero-Araújo & Laura Calvet & Angel A. Juan, 2017. "Waste collection under uncertainty: a simheuristic based on variable neighbourhood search," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 11(2), pages 228-255.
  • Handle: RePEc:ids:eujine:v:11:y:2017:i:2:p:228-255
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=83257
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Calvet & Rocio de la Torre & Anita Goyal & Mage Marmol & Angel A. Juan, 2020. "Modern Optimization and Simulation Methods in Managerial and Business Economics: A Review," Administrative Sciences, MDPI, vol. 10(3), pages 1-23, July.
    2. Angel A. Juan & Peter Keenan & Rafael Martí & Seán McGarraghy & Javier Panadero & Paula Carroll & Diego Oliva, 2023. "A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics," Annals of Operations Research, Springer, vol. 320(2), pages 831-861, January.
    3. Victor Abu-Marrul & Rafael Martinelli & Silvio Hamacher & Irina Gribkovskaia, 2023. "Simheuristic algorithm for a stochastic parallel machine scheduling problem with periodic re-planning assessment," Annals of Operations Research, Springer, vol. 320(2), pages 547-572, January.
    4. Mohammad Peyman & Pedro J. Copado & Rafael D. Tordecilla & Leandro do C. Martins & Fatos Xhafa & Angel A. Juan, 2021. "Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems," Energies, MDPI, vol. 14(19), pages 1-26, October.
    5. Erika M. Herrera & Javier Panadero & Patricia Carracedo & Angel A. Juan & Elena Perez-Bernabeu, 2022. "Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays," Mathematics, MDPI, vol. 10(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:11:y:2017:i:2:p:228-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.