IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v13y2022i1p237.html
   My bibliography  Save this article

Planning the Expansion of Long-Term Transmission Networks Using a Cycle-Based Formulation

Author

Listed:
  • Pedro Pablo Cardenas Alzate
  • Laura Monica Escobar Vargas
  • Antonio Hernando Escobar Zuluaga

Abstract

This paper presents a methodology to solve the long-term transmission expansion planning problem, using a formulation that uses mathematical expressions that are alternatives to the second Kirchhoff’s law and that are applied to the cycles critical of the system graph. The network transmission expansion planning problem of power systems is part of the socalled NP-complete problems, which belong to a category of problems that are dfficult to solve, for which polynomial solution algorithms are not known. The proposed methodology is applied to two test systems of the specialized literature with very good results.

Suggested Citation

  • Pedro Pablo Cardenas Alzate & Laura Monica Escobar Vargas & Antonio Hernando Escobar Zuluaga, 2019. "Planning the Expansion of Long-Term Transmission Networks Using a Cycle-Based Formulation," Modern Applied Science, Canadian Center of Science and Education, vol. 13(1), pages 237-237, January.
  • Handle: RePEc:ibn:masjnl:v:13:y:2022:i:1:p:237
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/38004/38472
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/38004
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burak Kocuk & Hyemin Jeon & Santanu S. Dey & Jeff Linderoth & James Luedtke & Xu Andy Sun, 2016. "A Cycle-Based Formulation and Valid Inequalities for DC Power Transmission Problems with Switching," Operations Research, INFORMS, vol. 64(4), pages 922-938, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Kyle Skolfield & Laura M. Escobar & Adolfo R. Escobedo, 2022. "Derivation and generation of path-based valid inequalities for transmission expansion planning," Annals of Operations Research, Springer, vol. 312(2), pages 1031-1049, May.
    2. Emma S. Johnson & Santanu Subhas Dey, 2022. "A Scalable Lower Bound for the Worst-Case Relay Attack Problem on the Transmission Grid," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2296-2312, July.
    3. Salvador Pineda & Juan Miguel Morales & Asunción Jiménez-Cordero, 2024. "Learning-assisted optimization for transmission switching," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 489-516, October.
    4. Selvaprabu Nadarajah & Andre A. Cire, 2020. "Network-Based Approximate Linear Programming for Discrete Optimization," Operations Research, INFORMS, vol. 68(6), pages 1767-1786, November.
    5. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    6. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    7. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2020. "Cost minimization of large-scale infrastructure for electricity generation and transmission," Omega, Elsevier, vol. 96(C).
    8. David Bergman & Andre A. Cire, 2018. "Discrete Nonlinear Optimization by State-Space Decompositions," Management Science, INFORMS, vol. 64(10), pages 4700-4720, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:13:y:2022:i:1:p:237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.