IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v7y2015i2p26.html
   My bibliography  Save this article

Simulating Soil Moisture under Different Tillage Practices, Cropping Systems and Organic Fertilizers Using CropSyst Model, in Matuu Division, Kenya

Author

Listed:
  • Muli M. N.
  • Onwonga R. N.
  • Karuku G. N.
  • Kathumo V. M.
  • Nandukule M. O.

Abstract

Soil moisture stress is a limiting factor in crop production particularly in arid and semi-arid lands (ASALs) as it affects many physiological and biochemical processes of plants. Research on moisture conservation measures is thus imperative. The current study used CropSyst model to simulate soil moisture under different tillage practices (oxen plough, tied ridges and furrows and ridges), cropping systems (monocropping, intercropping and crop-rotation) and organic fertilizers; farm yard manure, rock phosphate (RP) and Farmyard manure (FYM) combined with rock phosphate (RP+FYM). The study was conducted in Matuu Division, Kenya for two seasons; October 2012 to February 2013 short rain season (SRS) and March to August 2013 long rain season (LRS). The experiment was laid out in a Randomized Complete Block design with a split-split plot arrangement and replicated three times. The main plots were tillage practices whereas the split plots were cropping systems and split-split plots were organic fertilizers and a control (nothing applied). The test crops were sorghum (Sorghum bicolor L.) and sweet potato (Ipomea batatas L. lam) rotated and/or intercropped with dolichos (Lablab purpureus) and chickpea (Cicer arietinum). The CropSyst model was calibrated using measured soil texture, permanent wilting point, bulk density and initial soil moisture at the experimental site. Model validation was done using Root Mean Square Error (RMSE), percentage differences (PD) and willmott index (WI) of agreement. CropSyst model was reasonably validated as indicated by the low RMSE (0.5 to 1.3), PD (less than ±15) and WI index (close to 1). In the first season and second season, simulated soil moisture (101.91 and 108.3 mm) was significantly (P < 0.05) high in sorghum/dolichos intercrop with RP+FYM application under tied ridges and least (13.52 and 15.4 mm) in control treatment of sorghum mono crop under oxen plough. In sweet potato plots, both individual treatment and treatment interaction significantly influenced simulated soil moisture. Sweet potato-dolichos rotation (75.32 and 79.63 mm), with application of RP+FYM (75.03 and 79.39 mm) under tield ridges (95 and 100.24 mm) had highest simulated soil moisture levels under oxen plough (32.49 and 34.36 mm), sweet potato monocrop (53.46 and 55.26 mm) and control (52.52 and 55.39 mm) having the least during the first and second season, respectively. In both sorghum and sweet potato based cropping systems, soil moisture was correspondingly highest in tied ridges, intercropping and rotation systems involving dolichos and application of FYM+RP and least in control of monocropping under oxen plough. Information on effects of tillage practices, cropping systems and organic inputs could be very useful for soil water conservation purposes. Thus, using simulation models to attain the same could be the ultimate solution. A good agreement between observed and simulated soil moisture implied that CropSyst model is capable of investigating sustainable alternatives of increasing soil moisture in the ASALs.

Suggested Citation

  • Muli M. N. & Onwonga R. N. & Karuku G. N. & Kathumo V. M. & Nandukule M. O., 2015. "Simulating Soil Moisture under Different Tillage Practices, Cropping Systems and Organic Fertilizers Using CropSyst Model, in Matuu Division, Kenya," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 7(2), pages 1-26, January.
  • Handle: RePEc:ibn:jasjnl:v:7:y:2015:i:2:p:26
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/41157/24011
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/41157
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benli, B. & Pala, M. & Stockle, C. & Oweis, T., 2007. "Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 45-53, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    2. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    3. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    4. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    5. Suárez-Rey, E.M. & Romero-Gámez, M. & Giménez, C. & Thompson, R.B. & Gallardo, M., 2016. "Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements," Agricultural Systems, Elsevier, vol. 149(C), pages 150-164.
    6. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    7. Zeng, Ruiyun & Yao, Fengmei & Zhang, Sha & Yang, Shanshan & Bai, Yun & Zhang, Jiahua & Wang, Jingwen & Wang, Xin, 2021. "Assessing the effects of precipitation and irrigation on winter wheat yield and water productivity in North China Plain," Agricultural Water Management, Elsevier, vol. 256(C).
    8. Xiangxiang, Wang & Quanjiu, Wang & Jun, Fan & Qiuping, Fu, 2013. "Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau," Agricultural Water Management, Elsevier, vol. 129(C), pages 95-104.
    9. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    10. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    11. Kaur, Harsimran & Huggins, David R. & Carlson, Bryan & Stockle, Claudio & Nelson, Roger, 2022. "Dryland fallow vs flex-cropping decisions in inland Pacific Northwest of USA," Agricultural Systems, Elsevier, vol. 201(C).
    12. Montoya, F. & Camargo, D. & Ortega, J.F. & Córcoles, J.I. & Domínguez, A., 2016. "Evaluation of Aquacrop model for a potato crop under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 164(P2), pages 267-280.
    13. Yau, Sui-Kwong & Nimah, Musa & Farran, Mohamad, 2011. "Early sowing and irrigation to increase barley yields and water use efficiency in Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 98(12), pages 1776-1781, October.
    14. Finger, Robert, 2012. "Modeling the sensitivity of agricultural water use to price variability and climate change—An application to Swiss maize production," Agricultural Water Management, Elsevier, vol. 109(C), pages 135-143.
    15. Hafiza, Barira Shoukat & Ishaque, Wajid & Osman, Raheel & Aziz, Marjan & Ata-Ul-Karim, Syed Tahir, 2022. "Simulation of wheat yield using CERES-Wheat under rainfed and supplemental irrigation conditions in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Samiha Ouda & Tahany Noreldin & Juan José Alarcón & Ragab Ragab & Gianluca Caruso & Agnieszka Sekara & Magdi T. Abdelhamid, 2021. "Response of Spring Wheat ( Triticum aestivum ) to Deficit Irrigation Management under the Semi-Arid Environment of Egypt: Field and Modeling Study," Agriculture, MDPI, vol. 11(2), pages 1-13, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:7:y:2015:i:2:p:26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.