IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v5y2012i1p84.html
   My bibliography  Save this article

Long-term Cyclic Irrigation in Subsurface Drained Lands: Simulation Studies with SWAP

Author

Listed:
  • A.K. Verma
  • S.K. Gupta
  • R.K. Isaac

Abstract

SWAP (Soil-Water-Atmosphere-Plant) version 2.0 was evaluated for its capability to simulate the crop growth and salinity profile for cyclic irrigation of saline waters at Sampla (India) having shallow water table provided with a subsurface drainage system. Cyclic mode with canal water (EC=0.4 dS m-1) and saline drainage water (EC=12.5-15.5 dS m-1) were used to calibrate and validate the model for the years 1989-91. Canal water was used for pre-sowing irrigation and thereafter, canal and saline drainage waters were used as per pre-decided irrigation modes like all CW, CW-DW, 2CW-2DW, DW-CW, and 1CW-3DW. Absolute deviations and standard error between the SWAP simulated and observed relative yields during calibration ranged from 1.3 to 1.8% and 1.7 to 2.2% respectively. A close agreement was observed between the measured and simulated soil salinity profile. It established the validity of SWAP model under the experimental conditions prevalent at the site. It could also be concluded that the crops could be grown very well under subsurface drainage conditions; but, in dry rainfall years, salinity build-up might occur. To achieve a yield potential exceeding 80%, it could be suggested that cyclic use of saline waters such as 1CW-1DW and 2CW-2DW could be used in such years. A pre-sowing irrigation with canal water could be helpful to overcome the build-up of salts and salt amount washing depends upon the rainfall. Thus, there seems to be no fear of use of cyclic irrigation under drained conditions. The same fact was established through the use of model SWAP.

Suggested Citation

  • A.K. Verma & S.K. Gupta & R.K. Isaac, 2012. "Long-term Cyclic Irrigation in Subsurface Drained Lands: Simulation Studies with SWAP," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 5(1), pages 1-84, December.
  • Handle: RePEc:ibn:jasjnl:v:5:y:2012:i:1:p:84
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/21599/14819
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/21599
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boumans, J. H. & van Hoorn, J. W. & Kruseman, G. P. & Tanwar, B. S., 1988. "Water table control, reuse and disposal of drainage water in Haryana," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 537-545, August.
    2. Westcot, D. W., 1988. "Reuse and disposal of higher salinity subsurface drainage water -- A review," Agricultural Water Management, Elsevier, vol. 14(1-4), pages 483-511, August.
    3. Tedeschi, A. & Menenti, M., 2002. "Simulation studies of long-term saline water use: model validation and evaluation of schedules," Agricultural Water Management, Elsevier, vol. 54(2), pages 123-157, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Huan-Cheng & Li, Yu-Yi & Yang, Jin-Song & Liang, Ye-Sen, 2010. "Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions," Agricultural Water Management, Elsevier, vol. 97(12), pages 1971-1977, November.
    2. A. Tedeschi & M. Menenti, 2002. "Indicators of the Seasonal Cycle of Total Dissolved and Adsorbed Salts under Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(2), pages 89-103, April.
    3. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    4. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    5. van der Zee, S.E.A.T.M. & Shah, S.H.H. & van Uffelen, C.G.R. & Raats, P.A.C. & dal Ferro, N., 2010. "Soil sodicity as a result of periodical drought," Agricultural Water Management, Elsevier, vol. 97(1), pages 41-49, January.
    6. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    7. Chengfu Yuan & Shaoyuan Feng & Zailin Huo & Quanyi Ji, 2019. "Simulation of Saline Water Irrigation for Seed Maize in Arid Northwest China Based on SWAP Model," Sustainability, MDPI, vol. 11(16), pages 1-14, August.
    8. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    9. Heuperman, Alfred, 1999. "Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree-growing systems," Agricultural Water Management, Elsevier, vol. 39(2-3), pages 153-167, February.
    10. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    11. Tedeschi, A. & Dell'Aquila, R., 2005. "Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 308-322, August.
    12. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    13. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    14. Beltran, Julian Martinez, 1999. "Irrigation with saline water: benefits and environmental impact," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 183-194, May.
    15. Verma, A.K. & Gupta, S.K. & Isaac, R.K., 2012. "Use of saline water for irrigation in monsoon climate and deep water table regions: Simulation modeling with SWAP," Agricultural Water Management, Elsevier, vol. 115(C), pages 186-193.
    16. Brar, Harjeet Singh & Singh, Pritpal, 2022. "Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Gill, Bruce C. & Terry, Alister D., 2016. "‘Keeping salt on the farm’—Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia," Agricultural Water Management, Elsevier, vol. 164(P2), pages 291-303.
    18. Kamra, S. K. & Lal, Khajanchi & Singh, O. P. & Boonstra, J., 2002. "Effect of pumping on temporal changes in groundwater quality," Agricultural Water Management, Elsevier, vol. 56(2), pages 169-178, July.
    19. Tyagi, N. K., 2003. "Managing saline and alkaline water for higher productivity," IWMI Books, Reports H032636, International Water Management Institute.
    20. Neha & Gajender Yadav & Rajender Kumar Yadav & Ashwani Kumar & Aravind Kumar Rai & Junya Onishi & Keisuke Omori & Parbodh Chander Sharma, 2022. "Salt Removal through Residue-Filled Cut-Soiler Simulated Preferential Shallow Subsurface Drainage Improves Yield, Quality and Plant Water Relations of Mustard ( Brassica juncea L.)," Sustainability, MDPI, vol. 14(7), pages 1-18, March.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:5:y:2012:i:1:p:84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.