IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v2y2010i4p37.html
   My bibliography  Save this article

Farming Differentiation in the Rural-urban Interface of the Middle Mountains, Nepal: Application of Analytic Hierarchy Process (AHP) Modeling

Author

Listed:
  • Gopal Bhatta
  • Werner Doppler

Abstract

This article investigates the dominant factors of farming differentiation in the rural-urban interface of the densely populated Kathmandu valley using analytic hierarchy process (AHP). Rural-urban interface of Kathmandu valley is an important vegetable production pocket supplying a large amount in the city core. While subsistence farming in the rural area is characterized traditional farming integrating livestock, forestry with agriculture; intensification in the urban fringe is characterized by triple crop rotations, intensive vegetable production and market oriented modern farming. Seven factors which were supposed to cause farming variation in the interface were incorporated in the AHP framework and were subjected to farmers’ judgment in distinctly delineated three farming zones. These factors played crucial yet different roles in different farming zones. Inaccessibility and use of local resources; higher yield and accessibility and agro-ecological consideration and quality production are the key impacting factors towards subsistence, commercial inorganic and smallholder organic zones respectively. The quantification of the impacting factors of farming differentiation through AHP is an important piece of information that will contribute to modeling farming in the rural-urban interface in developing countries which represent diversity of farming practices and rapidly changing land use pattern.

Suggested Citation

  • Gopal Bhatta & Werner Doppler, 2010. "Farming Differentiation in the Rural-urban Interface of the Middle Mountains, Nepal: Application of Analytic Hierarchy Process (AHP) Modeling," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 2(4), pages 1-37, November.
  • Handle: RePEc:ibn:jasjnl:v:2:y:2010:i:4:p:37
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/6163/6214
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/6163
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hafeez, Khalid & Zhang, YanBing & Malak, Naila, 2002. "Determining key capabilities of a firm using analytic hierarchy process," International Journal of Production Economics, Elsevier, vol. 76(1), pages 39-51, March.
    2. Thomas L. Saaty, 1986. "Axiomatic Foundation of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 32(7), pages 841-855, July.
    3. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    4. Ball, J'Noel & Srinivasan, Venkat C, 1994. "Using the Analytic Hierarchy Process in House Selection," The Journal of Real Estate Finance and Economics, Springer, vol. 9(1), pages 69-85, July.
    5. Tom Kauko, 2004. "Sign Value, Topophilia, and the Locational Component in Property Prices," Environment and Planning A, , vol. 36(5), pages 859-878, May.
    6. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aull-Hyde, Rhonda & Erdogan, Sevgi & Duke, Joshua M., 2006. "An experiment on the consistency of aggregated comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 171(1), pages 290-295, May.
    2. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    3. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    4. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    5. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    6. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    7. Karami, Ezatollah, 2006. "Appropriateness of farmers' adoption of irrigation methods: The application of the AHP model," Agricultural Systems, Elsevier, vol. 87(1), pages 101-119, January.
    8. Hoene, Andreas & Jawale, Mandar & Neukirchen, Thomas & Bednorz, Nicole & Schulz, Holger & Hauser, Simon, 2019. "Bewertung von Technologielösungen für Automatisierung und Ergonomieunterstützung der Intralogistik," ild Schriftenreihe 64, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    9. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    10. Andre Bender & Allan Din & Philippe Favarger & Martin Hoesli & Janne Laakso, 1997. "An Analysis of Perceptions Concerning the Environmental Quality of Housing in Geneva," Urban Studies, Urban Studies Journal Limited, vol. 34(3), pages 503-513, March.
    11. Baback Vaziri & Shaunak Dabadghao & Yuehwern Yih & Thomas L. Morin & Mark Lehto, 2020. "Crowd-Ranking: a Markov-based method for ranking alternatives," Operational Research, Springer, vol. 20(1), pages 279-295, March.
    12. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    13. B S Ahn & S H Choi, 2008. "ERP system selection using a simulation-based AHP approach: a case of Korean homeshopping company," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 322-330, March.
    14. Robert L. Armacost & Jamshid C. Hosseini & Julie Pet-Edwards, 1999. "Using the Analytic Hierarchy Process as a Two-phase Integrated Decision Approach for Large Nominal Groups," Group Decision and Negotiation, Springer, vol. 8(6), pages 535-555, November.
    15. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    16. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    17. Pascoe, Sean & Doshi, Amar & Kovac, Mladen & Austin, Angelica, 2019. "Estimating coastal and marine habitat values by combining multi-criteria methods with choice experiments," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    18. Hsu-Shih Shih, 2016. "A Mixed-Data Evaluation in Group TOPSIS with Differentiated Decision Power," Group Decision and Negotiation, Springer, vol. 25(3), pages 537-565, May.
    19. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    20. Reinsberger, Kathrin & Brudermann, Thomas & Hatzl, Stefanie & Fleiß, Eva & Posch, Alfred, 2015. "Photovoltaic diffusion from the bottom-up: Analytical investigation of critical factors," Applied Energy, Elsevier, vol. 159(C), pages 178-187.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:2:y:2010:i:4:p:37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.