IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v10y2018i7p282.html
   My bibliography  Save this article

Automatic Section Control Technologies and GPS Auto-guidance Systems Adoption in Cotton Production

Author

Listed:
  • Brittani Edge
  • Margarita Velandia
  • Christopher Boyer
  • James Larson
  • Dayton Lambert
  • Roland Roberts
  • Bradley Wilson
  • Michael Buschermohle
  • Burton English
  • Roderick Rejesus
  • Larry Falconer

Abstract

Using data from a survey of cotton producers in 14 US states, and a bivariate probit regression, this study examined the effects of the following measured parameters on the adoption of Automatic Section Control (ASC) technologies and GPS Auto-Guidance (AG) systems- age, education, farm size, field geometry, information sources, as well as the use of specific production practices and other Precision Agriculture (PA) technologies. Results suggest that younger, more educated producers, consulting farm dealers for information about PA technologies, using other PA technologies, and managing larger farming operations located in counties with more irregularly shaped fields are more likely to adopt ASC technologies and AG systems. Predicted adoption probabilities estimated using regression results suggest the use of other PA technologies and farm dealers as a source of precision farming information have the largest impact on the probability of adopting ASC by cotton farmers. Additionally, these results suggest farmers with operations in eastern Arkansas, western Tennessee, and a couple of counties in middle Tennessee are more likely to adopt ASC technologies. Producers in these regions had the highest percentages of users of other PA technologies and farm dealers to obtain PA information.

Suggested Citation

  • Brittani Edge & Margarita Velandia & Christopher Boyer & James Larson & Dayton Lambert & Roland Roberts & Bradley Wilson & Michael Buschermohle & Burton English & Roderick Rejesus & Larry Falconer, 2018. "Automatic Section Control Technologies and GPS Auto-guidance Systems Adoption in Cotton Production," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(7), pages 282-282, June.
  • Handle: RePEc:ibn:jasjnl:v:10:y:2018:i:7:p:282
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/74693/41942
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/74693
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walton, Jonathan C. & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Larkin, Sherry L. & Martin, Steven W. & Marra, Michele C. & Paxton, Kenneth W. & Reeves, Jeanne , 2008. "Adoption and Abandonment of Precision Soil Sampling in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-21.
    2. Lambert, Dayton M. & English, Burton C. & Harper, David C. & Larkin, Sherry L. & Larson, James A. & Mooney, Daniel F. & Roberts, Roland K. & Velandia, Margarita & Reeves, Jeanne M., 2014. "Adoption and Frequency of Precision Soil Testing in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
    3. Lambert, Dayton M. & English, Burton & Harper, David & Larkin, Sherry L. & Laron, James & Mooney, Daniel F. & Roberts, Roland & Velandia, Margarita & Reeves, Jeanne, 2014. "Corrigendum to “Adoption and Frequency of Precision Soil Testing in Cotton Production”," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-1.
    4. McBride, William D. & Daberkow, Stan G., 2003. "Information And The Adoption Of Precision Farming Technologies," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 21(1), pages 1-18.
    5. Michael R. Rahm & Wallace E. Huffman, 1984. "The Adoption of Reduced Tillage: The Role of Human Capital and Other Variables," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(4), pages 405-413.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Velandia, Margarita & Edge, Brittani & Boyer, Christopher & Larson, James & Lambert, Dayton & Wilson, Bradley & Buschermohle, Michael & Rejesus, Roderick & Falconer, Larry & English, Burton C., 2016. "Factors Influencing the Adoption of Automatic Section Control Technologies and GPS Auto-Guidance Systems in Cotton Production," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235563, Agricultural and Applied Economics Association.
    2. Hanson, Erik D. & Cossette, Max K. & Roberts, David C., 2022. "The adoption and usage of precision agriculture technologies in North Dakota," Technology in Society, Elsevier, vol. 71(C).
    3. Boyer, Christopher N. & Lambert, Dayton M. & Velandia, Margarita & English, Burton C. & Robert, Roland K. & Larson, James A. & Larkin, Sherry L. & Paudel, Krishna P. & Reeves, Jeanne M., 2016. "Cotton Producer Awareness and Participation in Cost-Sharing Programs for Precision Nutrient-Management Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-16, January.
    4. Asare, Eric & Segarra, Eduardo, 2017. "Adoption and Extent of Adoption of Georeferenced Grid Soil Sampling Technology by Cotton Producers in the Southern US," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252773, Southern Agricultural Economics Association.
    5. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    6. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    7. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    8. Jenkins, Amanda & Velandia, Margarita & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2011. "Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(2), pages 307-320, September.
    9. L. Toma & A. P. Barnes & L.-A. Sutherland & S. Thomson & F. Burnett & K. Mathews, 2018. "Impact of information transfer on farmers’ uptake of innovative crop technologies: a structural equation model applied to survey data," The Journal of Technology Transfer, Springer, vol. 43(4), pages 864-881, August.
    10. Du, C. & Norwood, F.B., . "An Online Survey of Chinese Familiarity With and Attitudes Towards Pecans," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 38(1).
    11. Harmon, Xavier & Boyer, Christopher N. & Lambert, Dayton M. & Larson, James A., 2017. "Temporal Frequency Of Soil Test Information Effects On Returns To Potassium Fertilization In Cotton Production," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 49(2), pages 251-272, May.
    12. Li, Xiaogu & Jensen, Kimberly L. & Clark, Christopher D. & Lambert, Dayton M., 2016. "Consumer willingness to pay for beef grown using climate friendly production practices," Food Policy, Elsevier, vol. 64(C), pages 93-106.
    13. Velandia, Margarita M. & Lambert, Dayton M. & Jenkins, Amanda & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2009. "Factors Influencing Selection of Information Sources by Cotton Producers Considering Adoption of Precision Agriculture Technologies," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49326, Agricultural and Applied Economics Association.
    14. Monaco, Lourival C. & Brewer, Brady E. & Gray, Allan W., 2022. "Farm data technologies and their use by American farmers," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322454, Agricultural and Applied Economics Association.
    15. Fateh Mamine & Noure El Imène Boumali & Etienne Montaigne, 2020. "Why Farmers Adopt Agro-Industrial By-Products in Animal Feed? Lesson Learned in Algerian Case," Post-Print hal-02966547, HAL.
    16. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).
    17. Osrof, Hazem Yusuf & Tan, Cheng Ling & Angappa, Gunasekaran & Yeo, Sook Fern & Tan, Kim Hua, 2023. "Adoption of smart farming technologies in field operations: A systematic review and future research agenda," Technology in Society, Elsevier, vol. 75(C).
    18. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    19. Donika MALOKU, 2020. "Adoption Of Precision Farming Technologies: Usa And Eu Situation," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 22, pages 7-14, May.
    20. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:7:p:282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.