IDEAS home Printed from https://ideas.repec.org/a/ibf/acttax/v12y2020i1p81-96.html
   My bibliography  Save this article

Alternative Treatment Of Contribution In Aid Of Construction: The Impact On Investor-Owned Utility Plant Asset Replacement

Author

Listed:
  • Daniel Acheampong
  • Tanya Benford

Abstract

This paper proposes an alternative treatment of Contribution in Aid of Construction within the InvestorOwned water and wastewater utility industry. This study analyzes the impact of CIAC on funding utility aged assets by comparing the current amortization (credit) treatment to an alternative depreciation (debit) treatment of CIAC. This paper examines how the establishment of a reserve account for the recovery of plant asset usage through depreciation can fund Investor-Owned utility plant asset replacement Recommended viability financial ratios and related CIAC ratios are used to consider the efficacy of funding a reserve account to replace retired assets. The results suggest an inverse correlation between the current credit treatment and aged plant assets and a positive correlation between the proposed debit treatment and financing of donated plant assets

Suggested Citation

  • Daniel Acheampong & Tanya Benford, 2020. "Alternative Treatment Of Contribution In Aid Of Construction: The Impact On Investor-Owned Utility Plant Asset Replacement," Accounting & Taxation, The Institute for Business and Finance Research, vol. 12(1), pages 81-96.
  • Handle: RePEc:ibf:acttax:v:12:y:2020:i:1:p:81-96
    as

    Download full text from publisher

    File URL: http://www.theibfr2.com/RePEc/ibf/acttax/at-v12n1-2020/AT-V12N1-2020-7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brazell, David W. & Mackie, James B. III, 2000. "Depreciation Lives and Methods: Current Issues in the U.S. Capital Cost Recovery System," National Tax Journal, National Tax Association, vol. 53(n. 3), pages 531-62, September.
    2. Godfrey, L G & Orme, C D, 1994. "The Sensitivity of Some General Checks to Omitted Variables in the Linear Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(2), pages 489-506, May.
    3. David Wheeler & Michael Tiefelsdorf, 2005. "Multicollinearity and correlation among local regression coefficients in geographically weighted regression," Journal of Geographical Systems, Springer, vol. 7(2), pages 161-187, June.
    4. Brazell, David W. & Mackie, James B. III, 2000. "Depreciation Lives and Methods: Current Issues in the U.S. Capital Cost Recovery System," National Tax Journal, National Tax Association;National Tax Journal, vol. 53(3), pages 531-562, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serena Fatica, 2017. "Measurement and Allocation of Capital Inputs With Taxes: A Sensitivity Analysis for OECD Countries," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(1), pages 1-29, March.
    2. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    3. Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
    4. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    5. Kristoffer B. Birkeland & Allan D. D'Silva & Roland Füss & Are Oust, 2021. "The Predictability of House Prices: "Human Against Machine"," International Real Estate Review, Global Social Science Institute, vol. 24(2), pages 139-183.
    6. Joachim Zietz, 2006. "Detecting neglected parameter heterogeneity with Chow tests," Applied Economics Letters, Taylor & Francis Journals, vol. 13(6), pages 369-374.
    7. Hoehun Ha & Wei Tu, 2018. "An Ecological Study on the Spatially Varying Relationship between County-Level Suicide Rates and Altitude in the United States," IJERPH, MDPI, vol. 15(4), pages 1-16, April.
    8. Alexis Comber & Paul Harris, 2018. "Geographically weighted elastic net logistic regression," Journal of Geographical Systems, Springer, vol. 20(4), pages 317-341, October.
    9. Oshan, Taylor M., 2022. "Navigating the methodological landscape in spatial analysis: a comment on ‘A Route Map for Successful Applications of Geographically-Weighted Regression’," OSF Preprints rckzj, Center for Open Science.
    10. Carla Shoff & Tse-Chuan Yang, 2012. "Spatially varying predictors of teenage birth rates among counties in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(14), pages 377-418.
    11. J. M. C. Santos Silva & Silvana Tenreyro, 2015. "Trading Partners and Trading Volumes: Implementing the Helpman–Melitz–Rubinstein Model Empirically," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 93-105, February.
    12. Stephen Matthews & Daniel M. Parker, 2013. "Progress in Spatial Demography," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(10), pages 271-312.
    13. Chuanhua Wei & Chao Liu & Fengyun Gui, 2017. "Geographically weight seemingly unrelated regression (GWSUR): a method for exploring spatio-temporal heterogeneity," Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4189-4195, September.
    14. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    15. Li, Hengyun & Chen, Jason Li & Li, Gang & Goh, Carey, 2016. "Tourism and regional income inequality: Evidence from China," Annals of Tourism Research, Elsevier, vol. 58(C), pages 81-99.
    16. Olaru, Doina & Mulley, Corinne & Smith, Brett & Ma, Liang, 2017. "Policy-led selection of the most appropriate empirical model to estimate hedonic prices in the residential market," Journal of Transport Geography, Elsevier, vol. 62(C), pages 213-228.
    17. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    18. Dean Hanink & Robert Cromley & Avraham Ebenstein, 2012. "Spatial Variation in the Determinants of House Prices and Apartment Rents in China," The Journal of Real Estate Finance and Economics, Springer, vol. 45(2), pages 347-363, August.
    19. Stamatis Kalogirou, 2012. "Testing local versions of correlation coefficients," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(1), pages 45-61, March.
    20. repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
    21. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).

    More about this item

    Keywords

    Contribution in Aid of Construction; Investor-Owned Utilities; Credit Treatment; Debit Treatment; Aged Plant Assets; Donated Capital;
    All these keywords.

    JEL classification:

    • M4 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibf:acttax:v:12:y:2020:i:1:p:81-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mercedes Jalbert (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.