IDEAS home Printed from https://ideas.repec.org/a/hur/ijarbs/v4y2014i7p382-397.html
   My bibliography  Save this article

Modeling an Average Monthly Temperature of Sokoto Metropolis Using Short Term Memory Models

Author

Listed:
  • Musa Y.

Abstract

In this paper, the results of seasonal modeling of Sokoto monthly average temperature have been obtained using seasonal autoregressive integrated moving average modeling approach. Based on this seasonal modeling analysis, we conclude that, the best seasonal model among the models that are adequate to describe the seasonal dynamics for Sokoto city temperature is SARIMA (3,0,1)(4,1,0) 12, SARIMA (1,0,0)(0,1,1) 12 and SARIMA (4,0,2)(5,1,1) 12 models. These models are the only models that passed all the diagnostic tests and thus it can be used for forecasting at some future time.

Suggested Citation

  • Musa Y., 2014. "Modeling an Average Monthly Temperature of Sokoto Metropolis Using Short Term Memory Models," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 4(7), pages 382-397, July.
  • Handle: RePEc:hur:ijarbs:v:4:y:2014:i:7:p:382-397
    as

    Download full text from publisher

    File URL: http://hrmars.com/hrmars_papers/Modeling_an_Average_Monthly_Temperature_of_Sokoto_Metropolis_Using_Short_Term_Memory_Models.pdf
    Download Restriction: no

    File URL: http://hrmars.com/hrmars_papers/Modeling_an_Average_Monthly_Temperature_of_Sokoto_Metropolis_Using_Short_Term_Memory_Models.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Forecasting Irish inflation using ARIMA models," Research Technical Papers 3/RT/98, Central Bank of Ireland.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Ghazo, 2021. "Applying the ARIMA Model to the Process of Forecasting GDP and CPI in the Jordanian Economy," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 70-77, May.
    2. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Bayesian VAR Models for Forecasting Irish Inflation," Research Technical Papers 4/RT/98, Central Bank of Ireland.
    3. Syarifah Inayati & Nur Iriawan & Irhamah, 2024. "A Markov Switching Autoregressive Model with Time-Varying Parameters," Forecasting, MDPI, vol. 6(3), pages 1-23, July.
    4. KUMAR Manoj & ANAND Madhu, 2014. "An Application Of Time Series Arima Forecasting Model For Predicting Sugarcane Production In India," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 9(1), pages 81-94, April.
    5. Meyler, Aidan, 1999. "A Statistical Measure Of Core Inflation," Research Technical Papers 2/RT/99, Central Bank of Ireland.
    6. Tamerlan Mashadihasanli, 2022. "Stock Market Price Forecasting Using the Arima Model: an Application to Istanbul, Turkiye," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 439-454, July.
    7. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    8. Quinn, Terry & Kenny, Geoff & Meyler, Aidan, 1999. "Inflation Analysis: An Overview," Research Technical Papers 1/RT/99, Central Bank of Ireland.
    9. Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
    10. Aguilar, Ruben & Valdivia, Daney, 2011. "Precios de exportación de gas natural para Bolivia: Modelación y pooling de pronósticos [Bolivian natural gas export prices: Modeling and forecast pooling]," MPRA Paper 35485, University Library of Munich, Germany.
    11. Mohammad Rafiqul Islam & Nguyet Nguyen, 2020. "Comparison of Financial Models for Stock Price Prediction," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    12. Shiying Tu & Jiehu Huang & Huailong Mu & Juan Lu & Ying Li, 2024. "Combining Autoregressive Integrated Moving Average Model and Gaussian Process Regression to Improve Stock Price Forecast," Mathematics, MDPI, vol. 12(8), pages 1-15, April.
    13. Sallahuddin Hassan & Zalila Othman, 2018. "Forecasting on the long-term sustainability of the employees provident fund in Malaysia via the Box-Jenkins’ ARIMA model," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(1), pages 43-53, January.
    14. Ntebogang Dinah Moroke, 2014. "The robustness and accuracy of Box-Jenkins ARIMA in modeling and forecasting household debt in South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 6(9), pages 748-759.
    15. S. AL Wadi & Mohammad Almasarweh & Ahmed Atallah Alsaraireh, 2018. "Predicting Closed Price Time Series Data Using ARIMA Model," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 181-181, November.
    16. Han Hwa Goh & Kim Leng Tan & Chia Ying Khor & Sew Lai Ng, 2016. "Volatility and Market Risk of Rubber Price in Malaysia: Pre- and Post-Global Financial Crisis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 323-344, December.
    17. Kimolo, Deogratius, 2009. "Modelling and Forecasting Inflation in Tanzania: A Univariate Time Series Analysis," MPRA Paper 114782, University Library of Munich, Germany.
    18. Friedrich Fritzer & Gabriel Moser & Johann Scharler, 2002. "Forecasting Austrian HICP and its Components using VAR and ARIMA Models," Working Papers 73, Oesterreichische Nationalbank (Austrian Central Bank).
    19. Ramón Egea Pérez & Mónica Cortés-Molina & Francisco J. Navarro-González, 2021. "Analysis of Rainfall Time Series with Application to Calculation of Return Periods," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    20. Nyoni, Thabani, 2019. "Forecasting UK consumer price index using Box-Jenkins ARIMA models," MPRA Paper 92410, University Library of Munich, Germany.

    More about this item

    Keywords

    Seasonality; SARIMA; Identification; Estimation; and Diagnostics test;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hur:ijarbs:v:4:y:2014:i:7:p:382-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hassan Danial Aslam (email available below). General contact details of provider: http://hrmars.com/index.php/pages/detail/IJARBSS .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.