IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9649632.html
   My bibliography  Save this article

A Hybrid Approach for Project Crashing Optimization Strategy with Risk Consideration: A Case Study for an EPC Project

Author

Listed:
  • Chao Ou-Yang
  • Wang-Li Chen

Abstract

This study aims to develop and provide a comprehensive evaluation strategy for schedule-related variations and time-cost analysis for an engineering–procurement–construction (EPC) project. Time-cost analysis is an important aspect of project scheduling, particularly in long-term and costly EPC projects. In this study, a hybrid method is proposed for the time-cost optimization strategy evaluation of a project. Monte Carlo simulation is applied to determine contingency plans and realize the effective management of estimated schedule uncertainties. A mathematical integer linear programming optimization model coded using CPLEX is developed to assess appropriate strategies for project execution under time and cost constraints. A set of project evaluation optimization models considering risk and project crash plan and the relationship between crash cost and delay penalty is also developed for assessing project feasibility. The correlation between project risk and crashing strategy has seldom been evaluated simultaneously in previous research. This work fills this research gap by quantifying the feasibility of a project, with combined data on risk, schedule, and cost as evaluation indicators. It allows project managers to consider management issues and strategies before they implement projects. A practical example with numerical applications is presented to illustrate the contribution of the decision-making support mechanism, and several managerial insights are provided.

Suggested Citation

  • Chao Ou-Yang & Wang-Li Chen, 2019. "A Hybrid Approach for Project Crashing Optimization Strategy with Risk Consideration: A Case Study for an EPC Project," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, January.
  • Handle: RePEc:hin:jnlmpe:9649632
    DOI: 10.1155/2019/9649632
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9649632.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9649632.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9649632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2022. "Using Earned Value Management and Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 297(2), pages 451-466.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9649632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.