IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/879614.html
   My bibliography  Save this article

Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction

Author

Listed:
  • Jingling Zhang
  • Wanliang Wang
  • Yanwei Zhao
  • Carlo Cattani

Abstract

The multiobjective vehicle routing problem considering customer satisfaction (MVRPCS) involves the distribution of orders from several depots to a set of customers over a time window. This paper presents a self-adaptive grid multi-objective quantum evolutionary algorithm (MOQEA) for the MVRPCS, which takes into account customer satisfaction as well as travel costs. The degree of customer satisfaction is represented by proposing an improved fuzzy due-time window, and the optimization problem is modeled as a mixed integer linear program. In the MOQEA, nondominated solution set is constructed by the Challenge Cup rules. Moreover, an adaptive grid is designed to achieve the diversity of solution sets; that is, the number of grids in each generation is not fixed but is automatically adjusted based on the distribution of the current generation of nondominated solution set. In the study, the MOQEA is evaluated by applying it to classical benchmark problems. Results of numerical simulation and comparison show that the established model is valid and the MOQEA is effective for MVRPCS.

Suggested Citation

  • Jingling Zhang & Wanliang Wang & Yanwei Zhao & Carlo Cattani, 2012. "Multiobjective Quantum Evolutionary Algorithm for the Vehicle Routing Problem with Customer Satisfaction," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-19, December.
  • Handle: RePEc:hin:jnlmpe:879614
    DOI: 10.1155/2012/879614
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2012/879614.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2012/879614.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/879614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaoyuan Qin & Fengming Tao & Lixia Li, 2019. "A Vehicle Routing Optimization Problem for Cold Chain Logistics Considering Customer Satisfaction and Carbon Emissions," IJERPH, MDPI, vol. 16(4), pages 1-17, February.
    2. Benyamin Moghaddasi & Amir Salar Ghafari Majid & Zahra Mohammadnazari & Amir Aghsami & Masoud Rabbani, 2023. "A green routing-location problem in a cold chain logistics network design within the Balanced Score Card pillars in fuzzy environment," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-33, July.
    3. Gitae Kim, 2023. "Dynamic Vehicle Routing Problem with Fuzzy Customer Response," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    4. Wang, Minxi & Wang, Yajie & Liu, Wei & Ma, Yu & Xiang, Longtao & Yang, Yunqi & Li, Xin, 2021. "How to achieve a win–win scenario between cost and customer satisfaction for cold chain logistics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:879614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.