Artificial Neural Network to Estimate the Paddy Yield Prediction Using Climatic Data
Author
Abstract
Suggested Citation
DOI: 10.1155/2020/8627824
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
- Dominika Sieracka & Maciej Zaborowicz & Jakub Frankowski, 2023. "Identification of Characteristic Parameters in Seed Yielding of Selected Varieties of Industrial Hemp ( Cannabis sativa L.) Using Artificial Intelligence Methods," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
- Priya Brata Bhoi & Veeresh S. Wali & Deepak Kumar Swain & Kalpana Sharma & Akash Kumar Bhoi & Manlio Bacco & Paolo Barsocchi, 2021. "Input Use Efficiency Management for Paddy Production Systems in India: A Machine Learning Approach," Agriculture, MDPI, vol. 11(9), pages 1-27, August.
- Pradyot Ranjan Jena & Babita Majhi & Rajesh Kalli & Ritanjali Majhi, 2023. "Prediction of crop yield using climate variables in the south-western province of India: a functional artificial neural network modeling (FLANN) approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11033-11056, October.
- Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
- Christopher K. Wikle & Abhirup Datta & Bhava Vyasa Hari & Edward L. Boone & Indranil Sahoo & Indulekha Kavila & Stefano Castruccio & Susan J. Simmons & Wesley S. Burr & Won Chang, 2023. "An illustration of model agnostic explainability methods applied to environmental data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Shahram Rezapour & Erfan Jooyandeh & Mohsen Ramezanzade & Ali Mostafaeipour & Mehdi Jahangiri & Alibek Issakhov & Shahariar Chowdhury & Kuaanan Techato, 2021. "Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8627824. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.