IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8450213.html
   My bibliography  Save this article

A Novel Energy Management Strategy for Series Hybrid Electric Rescue Vehicle

Author

Listed:
  • Pei Li
  • Jun Yan
  • Qunzhang Tu
  • Ming Pan
  • Jinhong Xue

Abstract

The performance and fuel consumption of hybrid electric vehicle heavily depend on the EMS (energy management strategy). This paper presents a novel EMS for a series hybrid electric rescue vehicle. Firstly, considering the working characteristics of engine and battery, the EMS combining logic threshold and fuzzy control is proposed. Secondly, a fuzzy control optimization method based on IQGA (improved quantum genetic algorithm) is designed to achieve better fuel efficiency. Then, the modeling and simulation are completed by using MATLAB/Simulink; the results demonstrate that the fuel consumption can be decreased by 5.17% after IQGA optimization and that the optimization effect of IQGA is better than that of GA (genetic algorithm) and QGA (quantum genetic algorithm). Finally, the HILS (hardware in loop simulation) platform is constructed with dSPACE; the HILS experiment shows that the proposed EMS can effectively improve the vehicle working efficiency, which can be applied to practical application.

Suggested Citation

  • Pei Li & Jun Yan & Qunzhang Tu & Ming Pan & Jinhong Xue, 2018. "A Novel Energy Management Strategy for Series Hybrid Electric Rescue Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-15, October.
  • Handle: RePEc:hin:jnlmpe:8450213
    DOI: 10.1155/2018/8450213
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8450213.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/8450213.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8450213?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Fu & Linghong Zeng & Jingzhi Lei & Zhonghua Deng & Xiaowei Fu & Xi Li & Yan Wang, 2022. "A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 15(10), pages 1-18, May.
    2. Fuwu Yan & Jinhai Wang & Changqing Du & Min Hua, 2022. "Multi-Objective Energy Management Strategy for Hybrid Electric Vehicles Based on TD3 with Non-Parametric Reward Function," Energies, MDPI, vol. 16(1), pages 1-17, December.
    3. Jacek Pielecha & Kinga Skobiej & Przemyslaw Kubiak & Marek Wozniak & Krzysztof Siczek, 2022. "Exhaust Emissions from Plug-in and HEV Vehicles in Type-Approval Tests and Real Driving Cycles," Energies, MDPI, vol. 15(7), pages 1-38, March.
    4. Hao Chen & Mingde Gong & Dingxuan Zhao & Wei Zhang & Wenbin Liu & Yue Zhang, 2022. "Design and Motion Characteristics of Active–Passive Composite Suspension Actuator," Mathematics, MDPI, vol. 10(22), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8450213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.