IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8262549.html
   My bibliography  Save this article

Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe

Author

Listed:
  • Yaping Zhang
  • Ning Ning
  • Xin Quan
  • Shuanwei Zhang

Abstract

A composite structure with a heat pipe and foamed iron-nickel composite fire suppression is proposed on the basis of the phase-change heat transfer of the heat pipe, which simultaneously attenuates the metal foam explosion energy. A numerical simulation is conducted to evaluate the feasibility of the designed construction for suppressing explosions under various thicknesses and pore diameters of the metal foam. The results demonstrate that when the foam iron-nickel metal is installed in the pipeline, the temperature reduction rate in the pipeline can reach 8.9%. The new heat pipe foam composite structure can reduce the flame temperature to 1600 K within 0.095 s. It is concluded that the heat pipe composite metal foam structure pipeline has a strong effect on suppressing combustion and explosion overpressure. Due to the combined effect of the heat pipe vacuum chamber suction energy and the foamed iron-nickel, the flame temperature decay rate increases. The maximum attenuation rate of the foamed iron-nickel for the gas explosion shock wave reaches 41.76%, and the maximum flame temperature attenuation rate reaches 64.7%. The composite heat pipe structure can quickly disperse and transfer heat, thereby effectively destroying the heat storage environment as soon as possible to prevent a secondary explosion from occurring.

Suggested Citation

  • Yaping Zhang & Ning Ning & Xin Quan & Shuanwei Zhang, 2020. "Numerical Studies on the Heat Effect of Explosion Suppression by a Heat Pipe," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, February.
  • Handle: RePEc:hin:jnlmpe:8262549
    DOI: 10.1155/2020/8262549
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8262549.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8262549.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8262549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8262549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.