IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/805410.html
   My bibliography  Save this article

Simulation-Based Genetic Algorithm towards an Energy-Efficient Railway Traffic Control

Author

Listed:
  • Daniel Tuyttens
  • Hongying Fei
  • Mohand Mezmaz
  • Jad Jalwan

Abstract

The real-time traffic control has an important impact on the efficiency of the energy utilization in the modern railway network. This study is aimed to develop an energy-efficient railway traffic control solution for any specified railway. In other words, it is expected to define suitable driving profiles for all the trains running within a specified period through the targeted network with an objective to minimize their total energy consumption. How to optimize the train synchronization so as to benefit from the energy regenerated by electronic braking is also considered in this study. A method based on genetic algorithm and empirical single train driving strategies is developed for this objective. Six monomode strategies and one multimode strategy are tested and compared with the four scenarios extracted from the Belgian railway system. The results obtained by simulation show that the multi-mode control strategy overcomes the mono-mode control strategies with regard to global energy consumption, while there is no firm relation between the utilization rate of energy regenerated by dynamic braking operations and the reduction of total energy consumption.

Suggested Citation

  • Daniel Tuyttens & Hongying Fei & Mohand Mezmaz & Jad Jalwan, 2013. "Simulation-Based Genetic Algorithm towards an Energy-Efficient Railway Traffic Control," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-12, February.
  • Handle: RePEc:hin:jnlmpe:805410
    DOI: 10.1155/2013/805410
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/805410.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/805410.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/805410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chao & Meng, Xin & Guo, Mingxue & Li, Hao & Hou, Zhiqiang, 2022. "An integrated energy-efficient and transfer-accessible model for the last train timetabling problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:805410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.