IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/7210547.html
   My bibliography  Save this article

Feature Analysis on Mixed Traffic Flow of Manually Driven and Autonomous Vehicles Based on Cellular Automata

Author

Listed:
  • Xinghua Hu
  • Mengyu Huang
  • Jianpu Guo

Abstract

This paper attempts to disclose the features of the mixed traffic flow of manually driven vehicles (MVs) and autonomous vehicles (AVs). Considering dynamic headway, the mixed traffic flow was modelled based on the improved single-land cellular automata (CA) traffic flow model (DHD) proposed by Zhang Ningxi. The established CA model was adopted to obtain the maximum flow of the mixed traffic flow and was analyzed under different proportions of AVs. On this basis, the features of the mixed traffic flow were summarized. The main results are as follows: the proportion of AVs has a significant impact on the mixed traffic flow; when the proportion reached 0.6, the flow of the whole lane was twice that of the MV traffic flow. At a low density, the AV proportion has an obvious influence on mixed traffic flow. At a high density, the mixed traffic flow changed very little, as the AV proportion increased from 0 to 5. The reason is that the flow of the whole lane is constrained by the fact that MVs cannot move faster. However, when the AV proportion reached 0.8, the flow of the whole lane became three times that at the proportion of 0.6. At the speed of 126 km/h, the flow rate was 2.5 times the speed limit of 54 km/h. The findings lay a theoretical basis for the modelling of multilane mixed traffic flow.

Suggested Citation

  • Xinghua Hu & Mengyu Huang & Jianpu Guo, 2020. "Feature Analysis on Mixed Traffic Flow of Manually Driven and Autonomous Vehicles Based on Cellular Automata," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, November.
  • Handle: RePEc:hin:jnlmpe:7210547
    DOI: 10.1155/2020/7210547
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7210547.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/7210547.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/7210547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    2. Yao, Zhihong & Jin, Yuting & Jiang, Haoran & Hu, Lu & Jiang, Yangsheng, 2022. "CTM-based traffic signal optimization of mixed traffic flow with connected automated vehicles and human-driven vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Jiang, Yangsheng & Wang, Sichen & Yao, Zhihong & Zhao, Bin & Wang, Yi, 2021. "A cellular automata model for mixed traffic flow considering the driving behavior of connected automated vehicle platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    4. Vranken, Tim & Schreckenberg, Michael, 2022. "Modelling multi-lane heterogeneous traffic flow with human-driven, automated, and communicating automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Bowen Gong & Fanting Wang & Ciyun Lin & Dayong Wu, 2022. "Modeling HDV and CAV Mixed Traffic Flow on a Foggy Two-Lane Highway with Cellular Automata and Game Theory Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    6. Li, Xia & Xiao, Yuewen & Zhao, Xiaodong & Ma, Xinwei & Wang, Xintong, 2023. "Modeling mixed traffic flows of human-driving vehicles and connected and autonomous vehicles considering human drivers’ cognitive characteristics and driving behavior interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:7210547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.