IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6925764.html
   My bibliography  Save this article

An Agent-Based Model for Dispatching Real-Time Demand-Responsive Feeder Bus

Author

Listed:
  • Xin Li
  • Ming Wei
  • Jia Hu
  • Yun Yuan
  • Huifu Jiang

Abstract

This research proposed a feeder bus dispatching tool that reduces rides’ effort to reach a feeder bus. The dispatching tool takes in real-time user specific request information and optimizes total cost accordingly (passenger access time cost and transit operation cost) by choosing the best pick-up locations and feeder buses’ routes. The pick-up locations are then transmitted back to passengers along with GPS guidance. The tool fits well with the Advanced Traveler Information Services (ATIS) which is one of the six high-priority dynamic mobility application bundles currently being promoted by the United State Department of Transportation. The problem is formulated into a Mixed Integer Programming (MIP) model. For small networks, out-of-the-shelf commercial solvers could be used for finding the optimal solution. For large networks, this research developed a GA-based metaheuristic solver which generates reasonably good solutions in a much shorter time. The proposed tool is evaluated on a real-world network in the vicinity of Jiandingpo metro station in Chongqing, China. The results demonstrated that the proposed ATIS tool reduces both buses operation cost and passenger walking distance. It is also able to significantly bring down computation time from more than 1 hour to about 1 min without sacrificing too much on solution optimality.

Suggested Citation

  • Xin Li & Ming Wei & Jia Hu & Yun Yuan & Huifu Jiang, 2018. "An Agent-Based Model for Dispatching Real-Time Demand-Responsive Feeder Bus," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, March.
  • Handle: RePEc:hin:jnlmpe:6925764
    DOI: 10.1155/2018/6925764
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/6925764.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/6925764.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6925764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sörensen, Leif & Bossert, Andreas & Jokinen, Jani-Pekka & Schlüter, Jan, 2021. "How much flexibility does rural public transport need? – Implications from a fully flexible DRT system," Transport Policy, Elsevier, vol. 100(C), pages 5-20.
    2. Dai, Rongjian & Ding, Chuan & Gao, Jian & Wu, Xinkai & Yu, Bin, 2022. "Optimization and evaluation for autonomous taxi ride-sharing schedule and depot location from the perspective of energy consumption," Applied Energy, Elsevier, vol. 308(C).
    3. Jaâfar Berrada & Alexis Poulhès, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Post-Print hal-03325200, HAL.
    4. Xinhua Gao & Song Liu & Shan Jiang & Dennis Yu & Yong Peng & Xianting Ma & Wenting Lin, 2024. "Optimizing the Three-Dimensional Multi-Objective of Feeder Bus Routes Considering the Timetable," Mathematics, MDPI, vol. 12(7), pages 1-27, March.
    5. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    6. Yi Cao & Dandan Jiang & Shan Wang, 2022. "Optimization for Feeder Bus Route Model Design with Station Transfer," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    7. Yi Cao & Shan Wang & Jinyang Li, 2021. "The Optimization Model of Ride-Sharing Route for Ride Hailing Considering Both System Optimization and User Fairness," Sustainability, MDPI, vol. 13(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6925764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.