IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/595639.html
   My bibliography  Save this article

Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm

Author

Listed:
  • Peilin Liu
  • Wenhao Leng
  • Wei Fang

Abstract

This paper proposes a novel method of training the parameters of adaptive-network-based fuzzy inference system (ANFIS). Different from the previous works which emphasized on gradient descent (GD) method, we present an approach to train the parameters of ANFIS by using an improved version of quantum-behaved particle swarm optimization (QPSO). This novel variant of QPSO employs an adaptive dynamical controlling method for the contraction-expansion (CE) coefficient which is the most influential algorithmic parameter for the performance of the QPSO algorithm. The ANFIS trained by the proposed QPSO with adaptive dynamical CE coefficient (QPSO-ADCEC) is applied to five example systems. The simulation results show that the ANFIS-QPSO-ADCEC method performs much better than the original ANFIS, ANFIS-PSO, and ANFIS-QPSO methods.

Suggested Citation

  • Peilin Liu & Wenhao Leng & Wei Fang, 2013. "Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, June.
  • Handle: RePEc:hin:jnlmpe:595639
    DOI: 10.1155/2013/595639
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/595639.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/595639.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/595639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdis sadat Jalaee & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Naeeme Amani Zarin & Reza Derakhshani, 2022. "A Novel Hybrid Artificial Intelligence Approach to the Future of Global Coal Consumption Using Whale Optimization Algorithm and Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(7), pages 1-14, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:595639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.