IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2578-d785279.html
   My bibliography  Save this article

A Novel Hybrid Artificial Intelligence Approach to the Future of Global Coal Consumption Using Whale Optimization Algorithm and Adaptive Neuro-Fuzzy Inference System

Author

Listed:
  • Mahdis sadat Jalaee

    (Department of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Amin GhasemiNejad

    (Department of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Sayyed Abdolmajid Jalaee

    (Department of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Naeeme Amani Zarin

    (Department of Economics, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran)

  • Reza Derakhshani

    (Department of Geology, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran
    Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands)

Abstract

Energy has become an integral part of our society and global economic development in the twenty-first century. Despite tremendous technological advancements, fossil fuels (coal, natural gas, and oil) continue to be the world’s primary source of energy. Global energy scenarios indicate a change in coal consumption trends in the future, which in turn will have commercial, geopolitical, and environmental consequences. We investigated coal consumption up to 2030 using a new hybrid method of WOANFIS (whale optimization algorithm and adaptive neuro-fuzzy inference system). The WOANFIS method’s performance was assessed by the MSE (Mean Squared Error), MAE (Mean Absolute Error), STD (error standard deviation), RMSE (Root Mean Squared Error), and coefficient of correlation (R 2 ) among the real dataset and the WOANFIS result. For the prediction of global coal consumption, the proposed WOANFIS had the best MAE, RMSE, and correlation coefficient (R 2 ) values, which were 0.00113, 0.0047, and 0.98, respectively. Lastly, future global coal consumption was predicted up to 2030 by WOANFIS. Following 150 years of coal dominance, the results demonstrate that WOANFIS is a suitable method for estimating worldwide coal consumption, which makes it possible to plan for the transition away from coal.

Suggested Citation

  • Mahdis sadat Jalaee & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Naeeme Amani Zarin & Reza Derakhshani, 2022. "A Novel Hybrid Artificial Intelligence Approach to the Future of Global Coal Consumption Using Whale Optimization Algorithm and Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 15(7), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2578-:d:785279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monowar Hossain & Saad Mekhilef & Firdaus Afifi & Laith M Halabi & Lanre Olatomiwa & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2018. "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
    2. Peilin Liu & Wenhao Leng & Wei Fang, 2013. "Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, June.
    3. Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    4. Sayyed Abdolmajid Jalaee & Amin GhasemiNejad & Mehrdad Lashkary & Maryam Rezaee Jafari, 2019. "Forecasting Iran’s Energy Demand Using Cuckoo Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Jerome G. Gacu & Junrey D. Garcia & Eddie G. Fetalvero & Merian P. Catajay-Mani & Cris Edward F. Monjardin, 2023. "Suitability Analysis Using GIS-Based Analytic Hierarchy Process (AHP) for Solar Power Exploration," Energies, MDPI, vol. 16(18), pages 1-28, September.
    3. Chong, Daniel Jia Sheng & Chan, Yi Jing & Arumugasamy, Senthil Kumar & Yazdi, Sara Kazemi & Lim, Jun Wei, 2023. "Optimisation and performance evaluation of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) in the prediction of biogas production ," Energy, Elsevier, vol. 266(C).
    4. Reza Derakhshani & Mojtaba Zaresefat & Vahid Nikpeyman & Amin GhasemiNejad & Shahram Shafieibafti & Ahmad Rashidi & Majid Nemati & Amir Raoof, 2023. "Machine Learning-Based Assessment of Watershed Morphometry in Makran," Land, MDPI, vol. 12(4), pages 1-19, March.
    5. Simeunović, Jelena & Schubnel, Baptiste & Alet, Pierre-Jean & Carrillo, Rafael E. & Frossard, Pascal, 2022. "Interpretable temporal-spatial graph attention network for multi-site PV power forecasting," Applied Energy, Elsevier, vol. 327(C).
    6. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2578-:d:785279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.