IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5556062.html
   My bibliography  Save this article

Small-Signal Stability Analysis for Power System Frequency Regulation with Renewable Energy Participation

Author

Listed:
  • Tingyi He
  • Shengnan Li
  • Shuijun Wu
  • Ke Li

Abstract

With the improvement of the permeability of wind and photovoltaic (PV) energy, it has become one of the key problems to maintain the small-signal stability of the power system. Therefore, this paper analyzes the small-signal stability in a power system integrated with wind and solar energy. First, a mathematical model for small-signal stability analysis of power systems including the wind farm and PV station is established. And the characteristic roots of the New England power system integrated with wind energy and PV energy are obtained to study their small-signal stability. In addition, the validity of the theory is verified by the voltage drop of different nodes, which proves that power system integrated with wind-solar renewable energy participating in the frequency regulation can restore the system to the rated frequency in the shortest time and, at the same time, can enhance the robustness of each unit.

Suggested Citation

  • Tingyi He & Shengnan Li & Shuijun Wu & Ke Li, 2021. "Small-Signal Stability Analysis for Power System Frequency Regulation with Renewable Energy Participation," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, April.
  • Handle: RePEc:hin:jnlmpe:5556062
    DOI: 10.1155/2021/5556062
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5556062.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5556062.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5556062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mwaka I. Juma & Bakari M. M. Mwinyiwiwa & Consalva J. Msigwa & Aviti T. Mushi, 2021. "Design of a Hybrid Energy System with Energy Storage for Standalone DC Microgrid Application," Energies, MDPI, vol. 14(18), pages 1-15, September.
    2. Hasan Ali Abumeteir & Ahmet Mete Vural, 2022. "Design and Optimization of Fractional Order PID Controller to Enhance Energy Storage System Contribution for Damping Low-Frequency Oscillation in Power Systems Integrated with High Penetration of Rene," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5556062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.