IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/4295093.html
   My bibliography  Save this article

Fault Diagnosis Strategy for Wind Turbine Generator Based on the Gaussian Process Metamodel

Author

Listed:
  • Dongmei Zhang
  • Jun Yuan
  • Jiang Zhu
  • Qingchang Ji
  • Xintong Zhang
  • Hao Liu

Abstract

To facilitate continuous development of the wind power industry, maintaining technological innovation and reducing cost per kilowatt hour of the electricity generated by the wind turbine generator system (WTGS) are effective measures to facilitate the industrial development. Therefore, the improvement of the system availability for wind farms becomes an important issue which can significantly reduce the operational cost. To improve the system availability, it is necessary to diagnose the system fault for the wind turbine generator so as to find the key factors that influence the system performance and further reduce the maintenance cost. In this paper, a wind farm with 200 MW installed capacity in eastern coastal plain in China is chosen as the research object. A prediction model of wind farm’s faults is constructed based on the Gaussian process metamodel. By comparing with actual observation results, the constructed model is proved able to predict failure events of the wind turbine generator accurately. The developed model is further used to analyze the key factors that influence the system failure. These are conducive to increase the running and maintenance efficiency in wind farms, shorten downtime caused by failure, and increase earnings of wind farms.

Suggested Citation

  • Dongmei Zhang & Jun Yuan & Jiang Zhu & Qingchang Ji & Xintong Zhang & Hao Liu, 2020. "Fault Diagnosis Strategy for Wind Turbine Generator Based on the Gaussian Process Metamodel," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, January.
  • Handle: RePEc:hin:jnlmpe:4295093
    DOI: 10.1155/2020/4295093
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4295093.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/4295093.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4295093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liming Gou & Jian Zhang & Lihao Wen & Yu Fan, 2024. "State Reliability of Wind Turbines Based on XGBoost–LSTM and Their Application in Northeast China," Sustainability, MDPI, vol. 16(10), pages 1-19, May.
    2. Aiman Abbas Mahar & Nayyar Hussain Mirjat & Bhawani S. Chowdhry & Laveet Kumar & Quynh T. Tran & Gaetano Zizzo, 2023. "Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique," Energies, MDPI, vol. 16(5), pages 1-16, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:4295093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.