IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1934796.html
   My bibliography  Save this article

Nickel Price Forecast Based on the LSTM Neural Network Optimized by the Improved PSO Algorithm

Author

Listed:
  • Bilin Shao
  • Maolin Li
  • Yu Zhao
  • Genqing Bian

Abstract

Nickel is a vital strategic metal resource with commodity and financial attributes simultaneously, whose price fluctuation will affect the decision-making of stakeholders. Therefore, an effective trend forecast of nickel price is of great reference for the risk management of the nickel market’s participants; yet, traditional forecast methods are defective in prediction accuracy and applicability. Therefore, a prediction model of nickel metal price is proposed based on improved particle swarm optimization algorithm (PSO) combined with long-short-term memory (LSTM) neural networks, for higher reliability. This article introduces a nonlinear decreasing assignment method and sine function to improve the inertia weight and learning factor of PSO, respectively, and then uses the improved PSO algorithm to optimize the parameters of LSTM. Nickel metal’s closing prices in London Metal Exchange are sampled for empirical analysis, and the improved PSO-LSTM model is compared with the conventional LSTM and the integrated moving average autoregressive model (ARIMA). The results show that compared with the standard PSO, the improved PSO has a faster convergence rate and can improve the prediction accuracy of the LSTM model effectively. In addition, compared with the conventional LSTM model and the integrated moving average autoregressive (ARIMA) model, the prediction error of the LSTM model optimized by the improved PSO is reduced by 9% and 13%, respectively, which has high reliability and can provide valuable guidance for relevant managers.

Suggested Citation

  • Bilin Shao & Maolin Li & Yu Zhao & Genqing Bian, 2019. "Nickel Price Forecast Based on the LSTM Neural Network Optimized by the Improved PSO Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, September.
  • Handle: RePEc:hin:jnlmpe:1934796
    DOI: 10.1155/2019/1934796
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1934796.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/1934796.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/1934796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2023. "Particle swarm optimization of Elman neural network applied to battery state of charge and state of health estimation," Energy, Elsevier, vol. 285(C).
    2. He, Wenhua & Liu, Pei & Lin, Borong & Zhou, Hao & Chen, Xuesheng, 2022. "Green finance support for development of green buildings in China: Effect, mechanism, and policy implications," Energy Policy, Elsevier, vol. 165(C).
    3. Changxia Sun & Menghao Pei & Bo Cao & Saihan Chang & Haiping Si, 2023. "A Study on Agricultural Commodity Price Prediction Model Based on Secondary Decomposition and Long Short-Term Memory Network," Agriculture, MDPI, vol. 14(1), pages 1-22, December.
    4. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    5. Che, Zhongyuan & Peng, Chong & Yue, Chenxiao, 2024. "Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1934796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.