IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/1423930.html
   My bibliography  Save this article

Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems

Author

Listed:
  • Zhiming Li
  • Yongquan Zhou
  • Sen Zhang
  • Junmin Song

Abstract

The moth-flame optimization (MFO) algorithm is a novel nature-inspired heuristic paradigm. The main inspiration of this algorithm is the navigation method of moths in nature called transverse orientation. Moths fly in night by maintaining a fixed angle with respect to the moon, a very effective mechanism for travelling in a straight line for long distances. However, these fancy insects are trapped in a spiral path around artificial lights. Aiming at the phenomenon that MFO algorithm has slow convergence and low precision, an improved version of MFO algorithm based on Lévy-flight strategy, which is named as LMFO, is proposed. Lévy-flight can increase the diversity of the population against premature convergence and make the algorithm jump out of local optimum more effectively. This approach is helpful to obtain a better trade-off between exploration and exploitation ability of MFO, thus, which can make LMFO faster and more robust than MFO. And a comparison with ABC, BA, GGSA, DA, PSOGSA, and MFO on 19 unconstrained benchmark functions and 2 constrained engineering design problems is tested. These results demonstrate the superior performance of LMFO.

Suggested Citation

  • Zhiming Li & Yongquan Zhou & Sen Zhang & Junmin Song, 2016. "Lévy-Flight Moth-Flame Algorithm for Function Optimization and Engineering Design Problems," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-22, August.
  • Handle: RePEc:hin:jnlmpe:1423930
    DOI: 10.1155/2016/1423930
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/1423930.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/1423930.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/1423930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    2. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:1423930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.