IDEAS home Printed from https://ideas.repec.org/a/hin/jnljps/867056.html
   My bibliography  Save this article

Application of Generalized Space-Time Autoregressive Model on GDP Data in West European Countries

Author

Listed:
  • Nunung Nurhayati
  • Udjianna S. Pasaribu
  • Oki Neswan

Abstract

This paper provides an application of generalized space-time autoregressive (GSTAR) model on GDP data in West European countries. Preliminary model is identified by space-time ACF and space-time PACF of the sample, and model parameters are estimated using the least square method. The forecast performance is evaluated using the mean of squared forecast errors (MSFEs) based on the last ten actual data. It is found that the preliminary model is GSTAR(2;1,1). As a comparison, the estimation and the forecast performance are also applied to the GSTAR(1;1) model which has fewer parameter. The results showed that the ASFE of GSTAR(2;1,1) is smaller than that of the order (1;1). However, the t -test value shows that the performance is significantly indifferent. Thus, due to the parsimony principle, the GSTAR(1;1) model might be considered as a forecasting model.

Suggested Citation

  • Nunung Nurhayati & Udjianna S. Pasaribu & Oki Neswan, 2012. "Application of Generalized Space-Time Autoregressive Model on GDP Data in West European Countries," Journal of Probability and Statistics, Hindawi, vol. 2012, pages 1-16, May.
  • Handle: RePEc:hin:jnljps:867056
    DOI: 10.1155/2012/867056
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JPS/2012/867056.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JPS/2012/867056.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/867056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gehman, Andrew & Wei, William W.S., 2020. "Optimal spatial aggregation of space–time models and applications," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    2. Ryan H. L. Ip & Dmitry Demskoi & Azizur Rahman & Lihong Zheng, 2021. "Evaluation of COVID-19 Mitigation Policies in Australia Using Generalised Space-Time Autoregressive Intervention Models," IJERPH, MDPI, vol. 18(14), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljps:867056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.