IDEAS home Printed from https://ideas.repec.org/a/hin/jnljca/259167.html
   My bibliography  Save this article

An Optimal Fourth Order Iterative Method for Solving Nonlinear Equations and Its Dynamics

Author

Listed:
  • Rajni Sharma
  • Ashu Bahl

Abstract

We present a new fourth order method for finding simple roots of a nonlinear equation . In terms of computational cost, per iteration the method uses one evaluation of the function and two evaluations of its first derivative. Therefore, the method has optimal order with efficiency index 1.587 which is better than efficiency index 1.414 of Newton method and the same with Jarratt method and King’s family. Numerical examples are given to support that the method thus obtained is competitive with other similar robust methods. The conjugacy maps and extraneous fixed points of the presented method and other existing fourth order methods are discussed, and their basins of attraction are also given to demonstrate their dynamical behavior in the complex plane.

Suggested Citation

  • Rajni Sharma & Ashu Bahl, 2015. "An Optimal Fourth Order Iterative Method for Solving Nonlinear Equations and Its Dynamics," Journal of Complex Analysis, Hindawi, vol. 2015, pages 1-9, November.
  • Handle: RePEc:hin:jnljca:259167
    DOI: 10.1155/2015/259167
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JCA/2015/259167.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JCA/2015/259167.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/259167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlin Tao & Kalyanasundaram Madhu, 2019. "Optimal Fourth, Eighth and Sixteenth Order Methods by Using Divided Difference Techniques and Their Basins of Attraction and Its Application," Mathematics, MDPI, vol. 7(4), pages 1-22, March.
    2. Liu, Dongjie & Liu, Chein-Shan, 2022. "Two-point generalized Hermite interpolation: Double-weight function and functional recursion methods for solving nonlinear equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 317-330.
    3. Prem B. Chand & Francisco I. Chicharro & Neus Garrido & Pankaj Jain, 2019. "Design and Complex Dynamics of Potra–Pták-Type Optimal Methods for Solving Nonlinear Equations and Its Applications," Mathematics, MDPI, vol. 7(10), pages 1-21, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnljca:259167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.